Variance in Mathematics and Reading across Grades: Grade Equivalents and Logits

Does schooling make students more alike or more different? In 1916, Woody assumed within-grade variance in student performance to be constant across grades for his arithmetic tests. Thurstone, however, reanalyzing Woody's data in 1928, reported a "striking increase in absolute variability through the grades." A widely held view is that: "Variability is lowest in the lowest grades, when children are uniform in beginning their education. In later, grades, some have progressed much more than others, and the variability increases markedly" (Hills, 1976, p. 163).

A recent Rasch equating study of the Iowa Test of Basic Skills (forms CPS90 and CPS91) for math and reading, based on a cross-sectional sample of students in Grades 1 through 8 from the Chicago Public Schools, sheds light on this question.

The Figures show plots of person measures in each grade. Increase in ability in math, Figures 1 and 2, is fairly uniform across grades. This constant increase in math ability is not surprising because math learning does not approach a ceiling during a student's school career. There is always more math to learn.

Reading ability, Figures 4 and 5, however, increases more rapidly than math up to the third grade and thereafter more slowly.

Figures 3 and 6 show how the standard deviations of the person measures in math and reading vary with grade. We expect students from various backgrounds to begin school with varied abilities in subjects for which they have not had formal instruction such as math. As they progress in the grade, however, we expect students to become more homogeneous as they learn and practice on a subject. This will continue until a new topic is introduced. Then students can be expected to disperse.

Figure 3 implies that new math topics are introduced in the third grade. Students' math ability standard deviation decreases in the second grade as addition and subtraction are mastered, but increases in the third grade as long division looms. The math standard deviation then remains somewhat constant for grades 4 through 7, increasing slightly in grade 8.

Reading, on the other hand, reaches a steady state for most children. New words may be learned in each grade, but styles, techniques, and methods remain the same. As students move up in the grades, their reading standard deviations can be expected to decrease. Students begin their formal instruction on reading in the first grade. It is not surprising to see their standard deviation going up slightly by second grade. This can be seen in Figure 6. But, after the second grade, reading standard deviation begins to decrease.

Hills JR 1976 Measurement and Evaluation in the Classroom. Columbus, OH: Charles E. Merrill

Thurstone LL 1928 Scale construction with weighted observations. Journal of Educational Psychology 19, 7, 441-453.









Variance in Mathematics and Reading across Grades: Grade Equivalents and Logits, O K Lee … Rasch Measurement Transactions, 1992, 6:2 p. 222-3


Please help with Standard Dataset 4: Andrich Rating Scale Model



Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

www.rasch.org welcomes your comments:

Your email address (if you want us to reply):

 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
March 31, 2017, Fri. Conference: 11th UK Rasch Day, Warwick, UK, www.rasch.org.uk
April 2-3, 2017, Sun.-Mon. Conference: Validity Evidence for Measurement in Mathematics Education (V-M2Ed), San Antonio, TX, Information
April 26-30, 2017, Wed.-Sun. NCME, San Antonio, TX, www.ncme.org - April 29: Ben Wright book
April 27 - May 1, 2017, Thur.-Mon. AERA, San Antonio, TX, www.aera.net
May 26 - June 23, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 30 - July 29, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
July 31 - Aug. 3, 2017, Mon.-Thurs. Joint IMEKO TC1-TC7-TC13 Symposium 2017: Measurement Science challenges in Natural and Social Sciences, Rio de Janeiro, Brazil, imeko-tc7-rio.org.br
Aug. 7-9, 2017, Mon-Wed. In-person workshop and research coloquium: Effect size of family and school indexes in writing competence using TERCE data (C. Pardo, A. Atorressi, Winsteps), Bariloche Argentina. Carlos Pardo, Universidad Catòlica de Colombia
Aug. 7-9, 2017, Mon-Wed. PROMS 2017: Pacific Rim Objective Measurement Symposium, Sabah, Borneo, Malaysia, proms.promsociety.org/2017/
Aug. 10, 2017, Thurs. In-person Winsteps Training Workshop (M. Linacre, Winsteps), Sydney, Australia. www.winsteps.com/sydneyws.htm
Aug. 11 - Sept. 8, 2017, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Aug. 18-21, 2017, Fri.-Mon. IACAT 2017: International Association for Computerized Adaptive Testing, Niigata, Japan, iacat.org
Sept. 15-16, 2017, Fri.-Sat. IOMC 2017: International Outcome Measurement Conference, Chicago, jampress.org/iomc2017.htm
Oct. 13 - Nov. 10, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 5 - Feb. 2, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 10-16, 2018, Wed.-Tues. In-person workshop: Advanced Course in Rasch Measurement Theory and the application of RUMM2030, Perth, Australia (D. Andrich), Announcement
Jan. 17-19, 2018, Wed.-Fri. Rasch Conference: Seventh International Conference on Probabilistic Models for Measurement, Matilda Bay Club, Perth, Australia, Website
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
The HTML to add "Coming Rasch-related Events" to your webpage is:
<script type="text/javascript" src="http://www.rasch.org/events.txt"></script>

 

The URL of this page is www.rasch.org/rmt/rmt62f.htm

Website: www.rasch.org/rmt/contents.htm