# Cronbach's Alpha with the Dimension Coefficient to Jointly Assess a Scale's Quality

Reliability is a necessary, but not sufficient, component of validity (Downing, 2003; Feldt, Brennan, 1989). The dimension coefficient (DC) is, therefore, necessarily incorporated with Cronbach's α to completely and fully describe a scale's characteristics (van der et al., 2003), because not all reliable scales are valid (Cook, Beckman, 2006).

We manipulated data sets containing two types of item length (12 and 20). Each, with 5-point polytomous responses, was uniformly distributed across a ± 2 logit range. This was done for 6 kinds of normally distributed sample sizes (n = 12, 30, 50, 100, 300, and 500) with trait standard deviations (SDs) uniformly distributed from 0.5 to 9.5 logits across numbers of misfit items from 0 to 2, all of which misfit items are related to the true score with a zero correlation under Rasch model conditions. A total of 720 (= 2 item lengths x 6 sample sizes x 20 SDs x 3 numbers of misfit items) simulation datasets were administered in this study. True-score reliability and dimension coefficients were simultaneously calculated for each simulation data set.

In this case, DCs were temporarily defined by 5 respective approaches, such as Cronbach a, EGA_ratio as Eq.1 that applies the logic of scree plots to propose a ratio by computing the first and second eigenvalues (R12 = λ1/λ2) with that of the second and third ones (R23 = λ2/λ3)( Lord, 1980; Divgi, 1980), EGA_angle_ratio as Eq.2 that computes a ratio on angles at the second and third eigenvalues, Rasch loading SD as Eq.3 and Rasch_EGA_ratio as Eq.(4) derived from Rasch PCA on standardized residuals.

 DC = (R12/R23)/(1 + (R12/R23)) Eq. (1) DC = (θ12/θ23)/( 1 + (θ12/θ23)) Eq. (2) DC = 1- Item loading SD Eq. (3) DC = (RR12/RR23)/(1 + (RR12/RR23)) Eq. (4)
TypeSensitivitySpecificityROC95% CICut-off
EGA_ratio92.4697.030.970.94 to 0.98>0.67
EGA_angle_ratio94.5075.200.870.83 to 0.91>0.62
Cronbach α62.3199.010.820.77 to 0.86>0.95
Rasch_EGA_ratio74.8754.460.670.61 to 0.73≤0.55

The results were shown in Table 1 using the receiver operating characteristic (ROC) (Fawcett ,2006), in which the area under the curve, sensitivity and specificity for a binary classifier of one and multiple dimensions determined by parallel analysis(Horn, 1965). We found that the EGA_ratio with high sensitivity and specificity can be an approach to compute DC with a cut-off point (>0.67) determining the dimension strength. In our simulation study, the median of DC in Rasch unidimensionality scales without misfit items is 0.94, the highest DC can reach to 0.98.

If an instrument is valid, particularly if the unidimensionality is acceptable, we expect it to be reliable as well. However, an instrument can be both valid and reliable and still not acceptably unidimensional (DC < 0.70). It is also possible to have an instrument with low reliability and low unidimensionality.

This is why we proposed to incorporate Cronbach's α with the DC to jointly assess a scale's quality, and responded to the argument (Sijtsma, 2009) that using Cronbach's α often goes hand-in-hand with the PCA approach in practical test construction, especially when validity is not easily obtained because the true score is unknown.

Tsair-Wei Chien
Chi Mei Medical Center, Taiwan

References:

Cook, D.A., & Beckman, T.J. (2006). Current Concepts in Validity and Reliability for Psychometric Instruments: Theory and Application. Am J Med., 119, 166.e7-166.

Divgi, D.R. (1980). Dimensionality of binary items: Use of a mixed model. Paper presented at the annual meeting of the National Council on Measurement in Education. Boston, MA.

Downing, S.M. (2003). Validity: on the meaningful interpretation of assessment data. Med Educ., 37, 830-837.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861-874.

Feldt, L.S., & Brennan, R.L. (1989). Reliability. In: Linn RL, editor. Educational Measurement, 3rd Ed. New York: American Council on Education and Macmillan.

Horn, J.L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179-185.

Lord, F.M. (1980). Applications of item response theory to practical testing problems. Hillside, NJ: Erlbaum.

Sijtsma, K. (2009). On the Use, the Misuse, and the Very Limited Usefulness of Cronbach's Alpha. Psychometrika, 74, 107-120.

van der Heijden, P.G., van Buuren, S., Fekkes, M., Radder, J., & Verrips, E. (2003). Unidimensionality and reliability under Mokken scaling of the Dutch language version of the SF-36. Qual Life Res., 12(2), 189-98.

Cronbach's Alpha with the Dimension Coefficient to Jointly Assess a Scale's Quality. Tsair-Wei Chien … Rasch Measurement Transactions, 2012, 26:3 p. 1379

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez

 Forum Rasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
March 31, 2017, Fri. Conference: 11th UK Rasch Day, Warwick, UK, www.rasch.org.uk
April 2-3, 2017, Sun.-Mon. Conference: Validity Evidence for Measurement in Mathematics Education (V-M2Ed), San Antonio, TX, Information
April 26-30, 2017, Wed.-Sun. NCME, San Antonio, TX, www.ncme.org - April 29: Ben Wright book
April 27 - May 1, 2017, Thur.-Mon. AERA, San Antonio, TX, www.aera.net
May 26 - June 23, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 30 - July 29, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
July 31 - Aug. 3, 2017, Mon.-Thurs. Joint IMEKO TC1-TC7-TC13 Symposium 2017: Measurement Science challenges in Natural and Social Sciences, Rio de Janeiro, Brazil, imeko-tc7-rio.org.br
Aug. 7-9, 2017, Mon-Wed. In-person workshop and research coloquium: Effect size of family and school indexes in writing competence using TERCE data (C. Pardo, A. Atorressi, Winsteps), Bariloche Argentina. Carlos Pardo, Universidad Catòlica de Colombia
Aug. 7-9, 2017, Mon-Wed. PROMS 2017: Pacific Rim Objective Measurement Symposium, Sabah, Borneo, Malaysia, proms.promsociety.org/2017/
Aug. 10, 2017, Thurs. In-person Winsteps Training Workshop (M. Linacre, Winsteps), Sydney, Australia. www.winsteps.com/sydneyws.htm
Aug. 11 - Sept. 8, 2017, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Aug. 18-21, 2017, Fri.-Mon. IACAT 2017: International Association for Computerized Adaptive Testing, Niigata, Japan, iacat.org
Sept. 15-16, 2017, Fri.-Sat. IOMC 2017: International Outcome Measurement Conference, Chicago, jampress.org/iomc2017.htm
Oct. 13 - Nov. 10, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 5 - Feb. 2, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 10-16, 2018, Wed.-Tues. In-person workshop: Advanced Course in Rasch Measurement Theory and the application of RUMM2030, Perth, Australia (D. Andrich), Announcement
Jan. 17-19, 2018, Wed.-Fri. Rasch Conference: Seventh International Conference on Probabilistic Models for Measurement, Matilda Bay Club, Perth, Australia, Website
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com