# The Expected Value of a Point-Biserial (or Similar) Correlation

Interpreting the observed value of a point-biserial correlation is made easier if we can compare the observed value with its expected value. Is the observed value much higher than the expected value (indicating dependency in the data) or much lower than expected (indicating unmodeled noise)? With knowledge of how the observed value compares with its expected value, there is no need for arbitrary rules such as "Delete items with point-biserials less than 0.2."

The general formula for a Pearson correlation coefficient is:

 (1)

Point-Biserial Correlation (including all observations in the correlated raw score)

Suppose that Xn is Xni the observation of person n on item i. Yn is Rn, the raw score of person n, then the point-biserial correlation is:

 (2)

where X. is the mean of the {Xni} for item i, and R. is the mean of the Rn.

According to the Rasch model, the expected value of Xni is Eni and the model variance of Xni around its expectation is Wni. The model variances of X.i, Rn, R. are ignored here. S(Eni) = S(Xni), so that E.i = X.i.

Thus an estimate of the expected value of the point-measure correlation is given by the Rasch model proposition that: Xni = Eni±√Wni

 (3)

Since ±√Wni is a random residual, its cross-product with any other variable is modeled to be zero. Thus

 (4)

which provides a convenient formula for computing the expected value of the point-biserial correlation. Also see Note below

Point-Biserial Correlation (excluding current observation from the correlated raw score)

 (5)

where R.'is the mean of the Rn-Xni.

 (6)

 (7)

is the expected value of the point-biserial correlation excluding the current observation.

Point-Measure Correlation

Similarly, suppose that Yn is Bn, the ability measure of person n, then the point-measure correlation is:

 (8)

where B. is the mean of the Bn.

Thus an estimate of the expected value of the point-measure correlation is:

Similarly, suppose that Yn is Bn, the ability measure of person n, then the point-measure correlation is:

 (9)

which provides a convenient formula for computing the expected value of a point-measure correlation.

John Michael Linacre

Here is a worked example for a point-measure correlation:

Later note: Experience suggests that Wni*(N-2)/N is a better term in the divisors than Wni, so that the expected correlation for 2 observations becomes its observed value of ±1.0. The "expected value" derivation is asymptotic for large N. When we have only small N, in particular only two points, the derivation degrades. The correction of (N-2)/N makes the expected value more reasonable especially in the boundary condition of only two points. When there are only two points, (N-2) makes the Wni term disappear, so that the expected value of the correlation becomes +1.0 or -1.0 (or undefined), which will generally match its empirical value.

The Expected Value of a Point-Biserial (or Similar) Correlation. Linacre J.M. … Rasch Measurement Transactions, 2008, 22:1 p. 1154

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez

 Forum Rasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
March 31, 2017, Fri. Conference: 11th UK Rasch Day, Warwick, UK, www.rasch.org.uk
April 2-3, 2017, Sun.-Mon. Conference: Validity Evidence for Measurement in Mathematics Education (V-M2Ed), San Antonio, TX, Information
April 26-30, 2017, Wed.-Sun. NCME, San Antonio, TX, www.ncme.org - April 29: Ben Wright book
April 27 - May 1, 2017, Thur.-Mon. AERA, San Antonio, TX, www.aera.net
May 26 - June 23, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 30 - July 29, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
July 31 - Aug. 3, 2017, Mon.-Thurs. Joint IMEKO TC1-TC7-TC13 Symposium 2017: Measurement Science challenges in Natural and Social Sciences, Rio de Janeiro, Brazil, imeko-tc7-rio.org.br
Aug. 7-9, 2017, Mon-Wed. In-person workshop and research coloquium: Effect size of family and school indexes in writing competence using TERCE data (C. Pardo, A. Atorressi, Winsteps), Bariloche Argentina. Carlos Pardo, Universidad Catòlica de Colombia
Aug. 7-9, 2017, Mon-Wed. PROMS 2017: Pacific Rim Objective Measurement Symposium, Sabah, Borneo, Malaysia, proms.promsociety.org/2017/
Aug. 10, 2017, Thurs. In-person Winsteps Training Workshop (M. Linacre, Winsteps), Sydney, Australia. www.winsteps.com/sydneyws.htm
Aug. 11 - Sept. 8, 2017, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Aug. 18-21, 2017, Fri.-Mon. IACAT 2017: International Association for Computerized Adaptive Testing, Niigata, Japan, iacat.org
Sept. 15-16, 2017, Fri.-Sat. IOMC 2017: International Outcome Measurement Conference, Chicago, jampress.org/iomc2017.htm
Oct. 13 - Nov. 10, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 5 - Feb. 2, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 10-16, 2018, Wed.-Tues. In-person workshop: Advanced Course in Rasch Measurement Theory and the application of RUMM2030, Perth, Australia (D. Andrich), Announcement
Jan. 17-19, 2018, Wed.-Fri. Rasch Conference: Seventh International Conference on Probabilistic Models for Measurement, Matilda Bay Club, Perth, Australia, Website
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com