# How to Simulate Rasch Data

Dichotomous data:

1. Decide about the items. They are usually uniformly distributed. How many items? How wide the interval? The item mean is usually set at 0 logits. Simulate the item difficulties.

2. Decide about the person sample. This is usually normally distributed. How big a sample? What is the mean? What is the standard deviation? Simulate the person abilities.

4. For each response by a person to an item:

4A. Generate a random number U = uniform [0,1]

4B. Probability of failure = 1/(1 + exp(ability - difficulty))

4C. If U > Probability of failure, then X=1 else X=0.

4D. X is the simulated observation.

5. Check this by simulating data for a very high ability person (logit = 10): the data should all be "1".
Simulate data for a very low ability person (logit = -10): the data should all be "0"

Polytomous (rating scale or partial credit) data:

1. Decide about the items. They are usually uniformly distributed. How many items? How wide the interval? The item mean is usually set at 0 logits. Simulate the item difficulties.

2. Decide about the person sample. This is usually normally distributed. How big a sample? What is the mean? What is the standard deviation? Simulate the person abilities.

3. Decide about the number of categories, m. The higher categories, 2 to m, have Rasch-Andrich threshold values that are usually ascending and sum to zero across all the categories. Simulate the threshold values.

4. For each response by a person to an item:

4A. Generate a random number U = uniform [0,1]

4B. Compute the cumulative exponential of observing each category:
measure = 0
cumexp(1) = 1
Compute for category j = 2 to m
measure = measure + ability - difficulty - threshold(j)
cumexp(j) = cumexp(j-1) + exponential(measure)
Next category

4C. Identify the simulated observation:
U = U * cumexp(m)
For category j = 1 to m
if U <= cumexp(j) then X = j: exit
Next category

4D. X is the simulated observation.

5. Check this by simulating data for a very high ability person (logit = 10): the data should all be "m" (the top category).
Simulate data for a very low ability person (logit = -10): the data should all be "1" (the bottom category).

Unobserved Categories: sampling zeroes

Unobserved categories have a very low probability of being observed, so set the threshold values:
very low for an unobserved bottom category: example: 5 categories, bottom category unobserved: -40, -1, 0, 1
very high for an unobserved top category: example: 5 categories top category unobserved: -1, 0, 1, 40
very high then very low for the an unobserved intermediate category: example: 5 categories middle category unobserved: -1, 40, -40, 1

Many-Facets data:

As Polytomous data with the addition of:
1A. Decide about the other facets (tasks, demographics, etc.). Choose logit values for their elements.

4B. is amended:
measure = measure + ability - difficulty + {measures of elements of other facets that apply to this observation} - threshold(j)

John M. Linacre

Linacre J.M. (2007) How to Simulate Rasch Data … Rasch Measurement Transactions 21:3 p. 1125

Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez

 Forum Rasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
March 31, 2017, Fri. Conference: 11th UK Rasch Day, Warwick, UK, www.rasch.org.uk
April 2-3, 2017, Sun.-Mon. Conference: Validity Evidence for Measurement in Mathematics Education (V-M2Ed), San Antonio, TX, Information
April 26-30, 2017, Wed.-Sun. NCME, San Antonio, TX, www.ncme.org - April 29: Ben Wright book
April 27 - May 1, 2017, Thur.-Mon. AERA, San Antonio, TX, www.aera.net
May 26 - June 23, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 30 - July 29, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
July 31 - Aug. 3, 2017, Mon.-Thurs. Joint IMEKO TC1-TC7-TC13 Symposium 2017: Measurement Science challenges in Natural and Social Sciences, Rio de Janeiro, Brazil, imeko-tc7-rio.org.br
Aug. 7-9, 2017, Mon-Wed. In-person workshop and research coloquium: Effect size of family and school indexes in writing competence using TERCE data (C. Pardo, A. Atorressi, Winsteps), Bariloche Argentina. Carlos Pardo, Universidad Catòlica de Colombia
Aug. 7-9, 2017, Mon-Wed. PROMS 2017: Pacific Rim Objective Measurement Symposium, Sabah, Borneo, Malaysia, proms.promsociety.org/2017/
Aug. 10, 2017, Thurs. In-person Winsteps Training Workshop (M. Linacre, Winsteps), Sydney, Australia. www.winsteps.com/sydneyws.htm
Aug. 11 - Sept. 8, 2017, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Aug. 18-21, 2017, Fri.-Mon. IACAT 2017: International Association for Computerized Adaptive Testing, Niigata, Japan, iacat.org
Sept. 15-16, 2017, Fri.-Sat. IOMC 2017: International Outcome Measurement Conference, Chicago, jampress.org/iomc2017.htm
Oct. 13 - Nov. 10, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 5 - Feb. 2, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 10-16, 2018, Wed.-Tues. In-person workshop: Advanced Course in Rasch Measurement Theory and the application of RUMM2030, Perth, Australia (D. Andrich), Announcement
Jan. 17-19, 2018, Wed.-Fri. Rasch Conference: Seventh International Conference on Probabilistic Models for Measurement, Matilda Bay Club, Perth, Australia, Website
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com