Measures, Correlations, and Explained Variances

Rosenthal and Rubin (1979) deliberately challenge conventional statistical wisdom by means of a paradoxical interpretation of a simple data set. They suppose that 100 patients in a medical study are randomly assigned to new treatment N and 100 to standard treatment S. At the end of one year, 70% of the patients under treatment N are still alive, but only 30% under treatment S. Here is their data matrix:

Treatment            Survival after
Assignment    Dead   one year
New            30     70
Standard       70     30

How much better is Treatment N than Treatment S?
1) The Pearson product-moment correlation, r, between surviving and receiving treatment N is 0.4. Not an impressive value.

2) The variance in "survival explained" by assignment to treatment is r^2 = 0.4^2 = 0.16, i.e., only 16%. This is less than 1/6th of the total variance. Obviously a small and, therefore, obviously an "unimportant" amount.

But, when considering one's own medical treatment, Treatment N is clearly preferable to Treatment S. Rosenthal and Rubin (1979) stop here, having made their point that the relationship between statistics and substance is not always obvious. Let us continue.

3) The standard error of r for testing whether r=0 is approximately 1/sqrt(200) = 0.07. t = 0.4/0.07 = 5.7. Thus the probability that there is no correlation between treatment and survival is <.0001. This is statistically very significant, but it enables us only to declare that N and S are "not the same". It does not say how much better N is than S.

4) The logit distance between the effects of treatments N and S is the difference between the log-odds for survival with N and the log-odds for survival with S = loge(70/30) - loge (30/70) = 1.7 logits, with a standard error of sqrt(200/(30*70)) = 0.3 logits. Testing the hypothesis that the distance is zero, t = 1.7/0.3 = 5.7 (as expected).

5) Let us take this extremely simple logit analysis a step further. The analysis provides a useful 95% confidence interval for the survival advantage of the New treatment over the Standard:

(New - Standard) = 1.7 +- (2 * 0.3) = 1.7 +- 0.6 logits

Now we can conclude, with 95% confidence, that the survival advantage of New over Standard is:

1.1 logits < (New - Standard) < 2.3 logits

6) Finally, what are these advantages of 1.1, 1.7 and 2.3 logits on New treatment benefit worth to you, a prospective patient? The advantage to you depends on your Standard probability of survival.

Your               Your New survival probability
Standard           for various logit advantages
Survival           At least    Average     At most
Probability         1.1         1.7         2.3
.10                 .25         .38         .50
.20                 .43         .58         .71
.30 (in example)    .56         .70         .81
.40                 .67         .78         .87
.50                 .75         .85         .91

Despite the low correlation of 0.4 and low "explained variance" of only 16%, are you in any doubt as to which treatment is best for you? These data, when understood from the Rasch measurement point of view, are in no way paradoxical. They provide an entirely decisive answer to your important question.

By choosing to think with measures rather than correlations and variances, the conflict between the substantive and the statistical findings disappears.

Rosenthal R, Rubin DR (1979) A note on percent variance explained as a measure of the importance of effects. Journal of Applied Social Psychology 9:5, 395-396.


Measures, correlations and explained variances. Rosentahl R, Rubin DR, Linacre Jm, Wright BD. … Rasch Measurement Transactions, 1995, 9:2 p.435



Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt92m.htm

Website: www.rasch.org/rmt/contents.htm