Point-Biserial Fit Indices

Richardson and Stalnaker (1933) derived rpbis, the point-biserial correlation between an ordinal scale with only two values and a continuous, interval scale, based on the biserial correlation of Karl Pearson (1909). Nowadays, rpbis is often the "corrected" correlation between respondents' right/wrong responses to a target item and their ordinal raw scores on the test (without the target item) (Henrysson). rpbis indicates the extent to which an item cooperates with the rest of the test. It is useful in Rasch analysis because negative values detect miskeyed MCQ responses and negatively worded survey questions. Other diagnostic use, such as detecting redundancy by means of overly high positive values, is problematic because of deficiencies in rpbis.

An obvious improvement in rpbis would be to replace ordinal raw scores by interval ability measures. This produces the point- bimeasure correlation, rpbim:

rpbim


where
M1 is the mean measure of the n1 respondents answering the item correctly
M0 is the mean measure of the n0 respondents answering the item incorrectly
SDM is the standard deviation of all n1+n0=n respondent measures.

Even rpbim, however, is sensitive to targeting. With a uniform distribution of person abilities, the maximum rpbim could be .71 for an item with p-value .95, but .87 for an item with p-value .50. The corresponding minimum values could be -0.71 and -0.87. But ranges need not be symmetrical about 0. Fortunately rpbim's sensitivity to targeting can be reduced by standardizing its range to -1.0 to 1.0.

The maximum rpbim attainable for any item p-value is the one produced by its Guttman pattern (all 1's by high ability respondents, all 0's by low). The minimum rpbim is the anti- Guttman pattern (all 0's by high ability respondents, all 1's by low). This provides a standardized rpbig ("g" for Guttman):

rpbig


Negative values continue to indicate that this item is "working backwards", contradicting the construct. But values close to 1.0 are now diagnostic. They indicate a local lack of stochasticity in the data.

Jack Stenner

Note: the biserial correlation originated in Karl Pearson, '"On a New Method of Determining Correlation ....", Biometrika, Vol. VII, pp. 96-105, 1909, and the point-biserial correlation originated in Richardson, M.W. & Stalnaker, J.M. (1933). "A note on the use of bi-serial r in test research". Journal of General Psychology, 8, 463-465.

Henrysson, S. (1963). Correction for item-total correlations in item analysis. Psychometrika, 28, 211-218.


Point-biserial fit indices. Stenner AJ. … Rasch Measurement Transactions, 1995, 9:1 p.416



Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt91h.htm

Website: www.rasch.org/rmt/contents.htm