When to adjust for Differential Item Functioning

The symptom of DIF is that a "focal" group does better (or worse) on a particular item than a "reference" group, given those groups' performance on the rest of the test. When DIF exists, it prompts an investigation into the nature of the construct for the focal group (leading to test revision), and a re-estimation of respondents' measures.

Since any two samples will inevitably produce slightly different estimates of the difficulty of any item, an important aspect of DIF analysis is to screen out trivial or unreplicable item calibration differences across groups. There are three hurdles to establishing DIF:

1) Is the DIF statistically significant? A significance test between the two item calibrations is often the only screening applied. It is useful because it can save the researcher from taking seriously large calibration differences that have little supporting data. If there are only 10 members of a focal group, and a dichotomous item is reported as 1.0 logits harder for them, is there a statistical case for DIF? No, because the S.E. of 1.0 logits with only 10 replications is at least 0.6 logits, i.e., t<1.6. But DIF analysis is asymmetrical. Lack of statistical significance makes us skeptical that real DIF exists. Statistical significance does not assure us of it. "The most commonly occurring weakness in the application of [statistical] methods is undue emphasis on tests of significance." (Yates 1964).

2) Does the DIF have substantive implications? Are the different item calibrations, obtained from different groups, substantively the same, so that either measure leads to the same conclusions? It may be that dichotomous item 23 calibrates .1 logits easier for 10,000 girls than for 10,000 boys. Is there a case for a DIF adjustment? It might appear so, because the SE of 0.1 logits is statistically .03 logits. But the score impact of this DIF is, at most, .03 score points for an on-target item, .01 for an off- target item. Since such a small difference would not change our conclusions about group performance, it has no general repercussions. At worst, less than 3% of the focal group are penalized one point. Most of these would be at the ability level of the item's difficulty. If the item is far from a cut-point, then even real DIF would have no practical consequence.

But is this fair to everyone? If the DIF is taken as against individual boys, a .05 logit adjustment up in this item for boys may lift some boys above pass-fail. On the other hand, if the DIF is taken as in favor of individual girls, a .05 logit adjustment down in this item for girls may drop some girls below pass-fail. Since the calibration difference is so small, there is no way of knowing which, if either, is a "correct" adjustment. Further, once adjustment is embarked on, fairness mandates that the procedure be repeated for every other item. This leads to endless minuscule changes in measures and pass-fail decisions, and makes the final pass-fail decisions ever more arbitrary.

3) Is the DIF real or accidental? A single statistical test cannot differentiate between a real effect and an accident. A run of 10 coin-tosses producing 10 heads is unlikely, but does not prove the coin is biased. In advance of test administration, expert screening committees struggle in vain to identify and eliminate items that will manifest DIF. Once told that an item exhibits DIF against a focal group, however, it is easy for experts to imagine why this "must" be so. In the end, the "reality" of most statistically-detected DIF remains open to dispute.

The best test for DIF is "Does it replicate?" When the focal group is split in various ways, random or systematic, does the item continue to exhibit DIF in the same way for each subgroup? If so, the DIF shows evidence of being real. If not, it may be just an accident of sampling.

When DIF meets all three criteria there is reason to regard the DIF item as working like two "different" items. The data set may be restructured so that there is one representation of the item for the reference group and another for the focal group. Measures derived from this reconfigured data will be automatically adjusted for the DIF of that item.

Yates Frank (1964) Sir Ronald Fisher and the Design of Experiments. Biometrics 20:307-321


When to adjust for Differential Item Functioning. Du Y, Yates F. … Rasch Measurement Transactions, 1995, 9:1 p.414

MOMS Program. … Rasch Measurement Transactions, 1995, 9:1 p.413



Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt91e.htm

Website: www.rasch.org/rmt/contents.htm