[ Note: later work has indicated that this is not an effective indicator of unidimensionality. ]
If you are so disinterested in your data that you are willing to reduce its state of dimensionality to a single index, (rather than studying where and how it departs from your intended dimension), then here is a Rasch-based procedure of assessing unidimensionality.
For all persons, on all items,
1. compute R(model), the person separation reliability using model (asymptotic) standard errors. This treats the data as unidimensional. All fluctuations away from stochastic unidimensionality are regarded as due to expected local stochastic variation in stochasticity.
2. compute R(real), the person separation reliability using real (misfit-inflated) standard errors. This treats the data as though it might be multidimensional. All fluctuations away from stochastic unidimensionality are regarded as multidimensionalities of whatever cause. Since the misfit-inflated standard errors are larger than the model errors, R(real) is always less than R(model).
3. compute R(unidimensional), a "reliability" of item unidimensionality:
This reliability coefficient can be interpreted in the same way as a conventional reliability coefficient. Values above 0.9 indicate
a clearly unidimensional variable. Values below 0.5 might be cause for alarm.
Ben Wright
Unidimensionality coefficient. Wright BD. Rasch Measurement Transactions, 1994, 8:3 p.385
Forum | Rasch Measurement Forum to discuss any Rasch-related topic |
Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement
Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.
Coming Rasch-related Events | |
---|---|
Apr. 21 - 22, 2025, Mon.-Tue. | International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net |
Jan. 17 - Feb. 21, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
Feb. - June, 2025 | On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia |
Feb. - June, 2025 | On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia |
May 16 - June 20, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
June 20 - July 18, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com |
Oct. 3 - Nov. 7, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
The URL of this page is www.rasch.org/rmt/rmt83p.htm
Website: www.rasch.org/rmt/contents.htm