Reasonable mean-square fit values.

"Less control over the data → more off-dimensional behavior → more departures in the data from the Rasch model"

Though the ideal for measurement construction is that data fit the Rasch model, all empirical data departs from the model to some extent. But how much unmodelled noise is tolerable? Conventional statisticians base their decisions on significance tests, but these are heavily influenced by sample size.

"Very large samples form a special source of problems. This is because no model can ever be supposed to be perfectly fitted by data, so with a sufficiently large sample any model would have to be discarded. In connection with the problem Martin-Löf (1974) stated: 'This indicates that for large sets of data it is too destructive to let an ordinary significance test decide whether or not to accept a proposed statistical model [or data], because, with few exceptions, we know that we shall have to reject it even without looking at the data simply because the number of observations is so large. In such cases, we need instead a quantitative measure of the size of the discrepancy between the statistical model and the observed set of data.'" (Gustafson 1980).

Convenient quantitative measures of fit discrepancy are mean-square residual summary statistics, such as OUTFIT and INFIT. These statistics have expectation 1.0, and range from 0 to infinity. Mean-squares greater than 1.0 indicate underfit to the Rasch model, i.e., the data are less predictable than the model expects. Mean-squares less than 1.0 indicate overfit to the Rasch model, i.e., the data are more predictable than the model expects. A mean-square of 1.2 indicates that there is 20% more randomness (i.e., noise) in the data than modelled. A mean-square of 0.7 indicates a 30% deficiency in Rasch-model-predicted randomness (i.e., the data are too Guttman-like), which implies 100*(1-0.7)/0.7 = 43% more ambiguity in the inferred measure than modelled (e.g., the item difficulty estimated from low-ability persons differs noticeably from the item difficulty estimated from high-ability persons).


Reasonable Item Mean-square Ranges
for INFIT and OUTFIT
Type of Test Range
MCQ (High stakes)
MCQ (Run of the mill)
Rating scale (survey)
Clinical observation
Judged (agreement encouraged)
0.8 - 1.2
0.7 - 1.3
0.6 - 1.4
0.5 - 1.7
0.4 - 1.2


When is a mean-square too large or too small? There are no hard-and-fast rules. Particular features of a testing situation, e.g., mixing item types or off-target testing, can produce idiosyncratic mean-square distributions. Nevertheless, here, as a rule of thumb, are some reasonable ranges for item mean-square fit statistics. In Classical Test Theory, 3-PL IRT, and conventional statistics, low mean-squares are considered good. In Rasch theory, they indicate some redundancy in the responses, but they do no harm.

Ben Wright & John Michael Linacre

David Andrich (2024, May 30) in email to the Matilda Bay Club: "One way is to delete the least discriminating item, as seen ... by the fit statistics [largest mean-square], and see if the Rasch reliability, or Person Separation, drops. If it does, then it means the item had added more information than noise, and could be a reason for keeping it in. On the other hand if the reliability increases, then the item was adding more noise than in information, and from a statistical perspective, could be dropped. But you would want to go back and understand why an item that someone thought worked consistently with the other items did not do so."

J.-E. Gustafson (1980) Testing and obtaining fit of data to the Rasch model. British Journal of mathematical and Statistical Psychology, 33, p.220.

P. Martin-Löf (1974) The notion of redundancy and its use as a quantitative measure of the discrepancy between a statistical hypothesis and observational data. Scandinavian Journal of Statistics, 1, 3.

Note by Linacre: Informal simulations studies and experience analyzing hundreds of datasets indicate that:

Interpretation of parameter-level mean-square fit statistics:
>2.0Distorts or degrades the measurement system
1.5 - 2.0Unproductive for construction of measurement, but not degrading
0.5 - 1.5Productive for measurement
<0.5Less productive for measurement, but not degrading.
May produce misleadingly good reliabilities and separations

The Mean-Square statistic is also called the Relative Chi-Square and the Normed Chi-Square. According to www.psych-it.com.au/Psychlopedia/article.asp?id=277, in Structural Equation Modeling, the criterion for acceptance varies across researchers, ranging from less than 2 (Ullman, 2001) to less than 5 (Schumacker & Lomax, 2004).


[Later:] Overfit (mean-squares less than 1.0).

See also "Size vs. Significance: Mean-Square and Standardized Chi-Square Fit Statistics" www.rasch.org/rmt/rmt171n.htm


Item Fit and Person Fit

From a statistical Rasch perspective, persons and items are exactly the same. They are merely parameters of the Rasch model. So the fit criteria would be exactly the same. But, from a substantive perspective, persons and items differ. We expect the items to be better-behaved than the persons. We also expect item difficulties to continue into the future, but we expect person abilities to change. Also, we expect items to be encountered by many, many persons, but persons to encounter relatively few items. Consequently, we are usually stricter in our application of fit rules to items than to persons. A few maverick persons in a dataset don't worry us - they will have negligible impact on anything else. But a few maverick items raise questions about test administration, data entry accuracy, the definition of the latent variable, etc. We will immediately focus our attention on them because they may be symptomatic of a more pervasive problem, such as the wrong key for a multiple-choice test, or reversed-coded items on a survey.


Reasonable mean-square fit values. Wright BD, Linacre JM … Rasch Measurement Transactions, 1994, 8:3 p.370




Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Aug. 5 - Aug. 6, 2024, Fri.-Fri. 2024 Inaugural Conference of the Society for the Study of Measurement (Berkeley, CA), Call for Proposals
Aug. 9 - Sept. 6, 2024, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt83b.htm

Website: www.rasch.org/rmt/contents.htm