Why Fuss about Statistical Sufficiency?

Statistical sufficiency is an obscure property of the Rasch model. Although Georg Rasch does not use the term, he writes: "The best estimate of the ability parameter for a person can be derived from his raw score only" (Rasch, 1980, p.76). For Rasch, this is equivalent to the statement that a raw score is a sufficient statistic for an ability measure.

Ronald Fisher (1922) writes of a sufficient statistic "that the statistic chosen should summarize the whole of the relevant information supplied by the sample." The Fisher-Neyman theorem asserts that "T" is a sufficient statistic for the unknown measure underlying the data if, and only if, the probabilities associated with the data can be factored into two parts. One part must be dependent on the outcome of the measure through the sufficient statistic, "T", only, and the other part must be independent of the unknown measure (Halmos & Savage, p.226).

Halmos & Savage (p.240) provide an illustration of sufficiency that can be exported to the field of educational testing. Suppose a test of 20 items of known difficulty conforms to the Rasch model. Scoring these items is arduous, so the examination board decides to make pass- fail decisions for each examinee based on that examinee's success on a single item. To remove the possibility of bias in item selection, the board decides to select the item at random for each examinee. The board awards "pass", if the examinee succeeds on that item.

Next time, the board installs a scoring machine which reports the raw score for each examinee on the entire test. But the board wants to maintain the same pass-fail procedure as last time. So the board selects for each examinee a test item at random. Then, using the value of the raw score and the known difficulty of the selected item, the probability of success of the examinee on that item is estimated. This probability is compared with a random probability in order to assign the examinee a success or failure on that item. Now the pass- fail decision is made on that simulated outcome just as it had been previously with an observed response.

In the long run, which pass-fail method will be more accurate? The answer is that they will be equally accurate. This is because the raw score is a sufficient statistic. Statistical sufficiency implies that the examining board is just as well off knowing the value of the sufficient statistic as it is knowing the observations that comprise it. The extra details provided by knowing the actual responses do not provide the examining board any further useful guidance as to the size of the measure.

Statistical sufficiency is the same as the requirement that person measures be "sample-free." Among all relevant items of the same known difficulty, it must make no difference which one happened to be included in the test.

But what if there is differential item functioning? What if it matters which items of a certain difficulty are included in the test? Then the raw score is no longer a sufficient statistic. More information about the items must be provided. Perhaps the data can be decomposed into subsets, each with a sufficient statistic, or perhaps the test only admits of a qualitative description of each of the responses observed.

Sufficiency is an idea based on a probability model for the data. Idea sufficiency is never met in practice. Rather, the pattern of the observed data must be compared with that which would be expected were sufficiency to exist. This comparison forms the basis of the decision as to whether the data approximates the idea closely enough for measurement.

What is the relationship between the sufficient statistic and the underlying measure? A sufficient statistic does not provide an exact value for the underlying measure, rather the statistic summarizes all that is known on which to base an estimate of that measure. Whether that estimate is statistically unbiased or consistent or "best" (minimum variance) are matters quite apart from statistical sufficiency.

Achievement of statistical sufficiency is a theoretical idea. This idea corresponds to the practical intention that estimates of measures be as free as possible of the context from which they were obtained. To belittle sufficiency is to reject the goal of liberating measures from the local particulars of the measuring instrument and environment.

Halmos PR & Savage LJ. 1949. Application of the Radon-Nikodyna theorem to the theory of sufficient statistics. Annals of Math. Stat. 20, p.225-241.



Why Fuss about Statistical Sufficiency?, J Linacre … Rasch Measurement Transactions, 1992, 6:3 p. 230




Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt63c.htm

Website: www.rasch.org/rmt/contents.htm