Treatment Effects: Fixed-Effects Chi-Square of Homogeneity

Treatment effects, structural item properties, experimental conditions and time points can be modelled as constituents of item difficulty according to Gerhard Fischer and Ivo Ponocny (Annual Meeting of the Psychometric Society, Columbus, Ohio, July 1992).

This paper discusses a self-rating inventory of 24 items (symptoms of psychosomatic disorders) with 4 response categories, administered to 87 patients prior to and after treatment. 37 patients received medication and relaxation therapy, 50 only medication. Each patient is modelled at a constant level of functioning. New constituents are introduced into the item difficulties to mark changes in patient functioning after treatment. The model can be:

loge(Pnimrj/Pnimrj-1) = Bn - Di - Mim - Rir - Fij

Bn is the functional level of person n
Di is the difficulty of item i
Mim is medication improvement
Mi1=0 prior to treatment
Mi2 is post-treatment benefit on item i
Rir is relaxation improvement
Ri1=0 prior to treatment, or for no-relaxation
Ri2 is post-treatment benefit on item i
Fij is the partial credit scale structure for item i.


The authors ask: Is the effect of medication, Mi2, (or relaxation, Ri2) the same for all items? Does it have a statistically significant effect on patient functioning? They base their answers on Conditional Maximum Likelihood estimation CMLE, because "likelihood ratio tests can be established rigorously and can easily be carried out". Likelihood ratio tests are valid when the hypothesis is true, the sample size is large and normality holds. Then differences between log-likelihoods become Chi^2- distributed. To test the hypothesis that Mi2 (or Ri2) are the same for all items, two analyses are performed. First the log-likelihood of the data under the full model is estimated, lambda1. Then Mi2 is reparameterized as M2, modelling a common medication effect across items, and a new log-likelihood estimated, lambda2. The test statistic is

Chi^2 = -2(lambda2 -lambda1)

with 23 degrees of freedom (24 item effects - 1 common effect). The hypothesis that M2=0 (or R2=0) can be tested in a similar way.

However, for any method producing a measure and standard error for Mi2 (or Ri2), the equivalence of treatment effects across items can be investigated with just one analysis, a "fixed effects" chi-square of homogeneity [see Box].

A graphical version of this is to plot the estimates of Mi2 (or Ri2) with 2 standard-error confidence bands. When all confidence bands overlap the common effect, then the estimates are statistically equivalent. An estimate of this common effect is the information-weighted mean of all item-level effect estimates [see Box]. The arithmetic mean is good enough when standard errors of item-level effects are similar.

A simple way to obtain the common effect of Mi2 (or Ri2) is to reanalyze the data parameterizing those common values as M2 (or R2). A t-test of the hypothesis that there is no M2 (or R2) effect is obtained by dividing M2 (or R2) by its standard error.

These approaches to estimating the size and statistical significance of effects yield slightly different numerical results, some more approximate than others, none absolutely precise. This reminds us that it is the meaning of numbers, not their values when compared to arbitrary criteria, that is paramount.


The "Fixed Effects" Chi-Square of Homogeneity
For L measures, Di, with standard errors, SEi,
the information in each measure is:
ωi = 1/SEi²
 
The mean (common information-weighted) effect is:
Σ(ωiDi)/Σωi with S.E.: √ 1/Σωi
 
A test of the hypothesis that all L measures are
statistically equivalent to one common
"fixed effect", apart from measurement error, is:
 
χ² = Σ(ωiDi²) - (ΣωiDi)²/Σωi
a chi-square statistic with L-1 d.f.
 
p>.05 (or p>.01) indicates
statistically equivalent estimates


Treatment Effects



Treatment Effects: Fixed-Effects Chi-Square of Homogeneity, J Linacre … Rasch Measurement Transactions, 1992, 6:2 p. 218-9




Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt62b.htm

Website: www.rasch.org/rmt/contents.htm