Rasch Dichotomous Model vs Birnbaum 3-PL Three-Parameter Logistic Model

Headings:Rasch Dichotomous ModelBirnbaum 3-PL Model
Item parameters1 item parameter3 item parameters
A-1 Binomial probability of person n succeeding on dichotomous item i: loge [P/(1-P)] = Bn - Di loge [(P-ci)/(1-P)] = 1.7 ai (t - bi)
A-2 Item characteristic curve (ICC): Monotonic ogive with slope and lower asymptote to be estimated Logistic ogive with specified slope and asymptotes
A-3 Person ability: Bn measures person n B-distribution estimated from data Subjects assumed to be sampled from N(0,1) or other arbitrary distribution
A-4 Item difficulty: Di calibrates item i bi estimates ICC inflection point
A-5 Item discrimination: Specified at constant or unity. Misfit detects variation ai estimates ICC slope at bi. Sample dependent
A-6 Guessing success on item by low ability persons: Preset at constant or zero. Person fit detects lucky guessers ci estimates ICC lower asymptote. Sample dependent
B-1 Motivation: Measurement construction Data description
B-2 Ruled by: Theory and intention Data and chance
B-3 Substance of latent variable: Definitive. Items uniquely ordered Ambiguous. Item order varies with ability level because ai and ci variation causes ICCs to cross
B-4 Unidimensionality: Specified by model Assumed
B-5 Local independence: Verified by fit analysis Not evaluated
B-6 Sufficient statistics: Unweighted raw scores Weighted raw scores if and only if weights known a priori
B-7 Unit of calibration: Log-odds unit (logit) Normit-scaled logits (logit/1.7)
C-1 Estimation Raw scores are sufficient. No arbitrary constraints needed No sufficient statistics. Arbitrary constraints required to control parameter interactions
C-2 Standard errors: Well defined Skewed by arbitrary constraints
C-3 Fit statistics: Based on asymptotic distributions of responses Clouded by parameter interactions
C-4 Gross misfit between model and data: Fit statistics identify invalid data and guide diagnosis and remediation Hidden by over-parameterization and arbitrary constraints required for estimation
C-5 Person diagnosis and quality control: Guided by individual person fits and specific item response residuals Person estimates defined to be random events!?
C-6 Item diagnosis and quality control: Guided by individual item fits and specific person response residuals Hidden by over-parameterization and arbitrary constraints required for estimation
C-7 Random guessing: Response set: Scanning error: Identified by misfit which cues remediation or elimination of error Increases ci and decreases ai of whatever item encounters unexpected successes
C-8 Item miskeying: Many correct options: No correct options: Identified by misfits which cue remediation or elimination of errors Decreases unestimated upper asymptote. Decreases ai
C-9 Duplicate test item: Detected by model overfit Increases ai. Seems to improve test!?
C-10 Item bias: Different item function: Size and significance estimated from person group residuals Not detectable. Requires additional analysis
D-1 Missing data: No problem Biases estimates
D-2 Minimum useful data: 4 items by 10 persons Said to be at least 1000 persons
D-3 Typical stable data: 20 items by 200 persons Does not exist
D-4 Common-item equating: Item Banking: Computer-adaptive tests: Straightforward Impossible, unless bi assumed to dominate (i.e. Rasch model approximated)
D-5 Common-person equating: Straightforward Only if person distributions match
D-6 Weighting to combine items of differing discriminations Model holds when weights decided rather than estimated. Weight validity assessed by fit When ai pre-set, then approximates weighted Rasch analysis
D-7 Polytomous data: Solved by Rating Scale model Not addressed
D-8 Judge intermediation: Solved by Facets model Not addressed

Rasch Dichotomous Model vs Birnbaum 3-PL Three-Parameter Logistic Model. Wright BD. … Rasch Measurement Transactions, 1992, 5:4 p.178




Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt54c.htm

Website: www.rasch.org/rmt/contents.htm