Understanding Confidence Intervals

Confidence intervals are constructed from an estimate and its standard error. These intervals can be conceptualized two ways. From one perspective, we can say what proportion of random replications of this interval include the "true, fixed value" for the parameter over the long run (Neyman 1952 p.194f). This Neyman-Pearson approach has the weight of history and reassures determinists. From another perspective, we can say what proportion of possible values of the parameter lies within this interval. This Savage-Bayesian approach (Edwards et al. 1963) accommodates the layman interpretation of confidence intervals and also satisfies probabilists.

The Neyman-Pearson understanding is that the "confidence" interval formed by an estimate plus and minus some standard errors is a statistic which, upon random replication, can be expected to contain the unknowable but fixed "true" parameter a specified proportion of the time. Whether the single example of such an interval which we have in hand has succeeded in doing this is, by definition, unknown. Maybe yes. Maybe no. All we claim to know is the long-run behavior of random replications of intervals formed this way.

Few users of confidence intervals, however, couch their inferences so carefully. Most imply, instead, that they have established such-and- such confidence in the claim that the "truth" they seek is inside their particular interval.

The Savage-Bayesian approach, sometimes employing the terms "credible" or "believable" interval, comes closer to practice. The actual Savage-Bayesian understanding, however, is that, given the observed estimate and its error, such-and-such proportion of all possible values of the parameter fall within the interval.

Something important has happened in this shift of interpretation. The unknown parameter is no longer an unknowable but "fixed truth". Rather it is a "variable" with a range of possible values. The Savage-Bayes interval embraces a specified proportion of these possibilities and therefore serves to define a range of reasonable values for the parameter.

Growing beyond a naive search for "fixed truths" and seeking instead for usefully limited "ranges of possible values" is an important step forward in the evolution of inference.

Neyman J (1952) Lectures and Conferences on Mathematical Statistics and Probability. 2nd Ed. Washington: US Dept of Agriculture.

Edwards W, Lindman H, Savage L.J. (1963) Bayesian statistical inference for psychological research. Psychological Review, 70/3, p.193-242. In: The Writings of Leonard Jimmie Savage - A Memorial Selection. Washington: American Statistical Assoc. 1981.

Confidence intervals. Wright BD. … Rasch Measurement Transactions, 1992, 5:4 p.175




Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt54b.htm

Website: www.rasch.org/rmt/contents.htm