Point-biserial Correlations and Item Fits

The relation between point-biserial correlation discrimination estimates (rpbis) and Rasch fit statistics (RFS) is nearly monotonic apart from the effect of item-person targeting on point-biserial ceilings.

Maximum values of the point-biserial correlation
Maximal point-biserial or point-measure correlation is (Normal Ordinate)/square-root(P-Value * (1 - P-Value))
Figure corrected on 7/25/2011
Maximum values of the point-biserial correlation

The Figure shows the maximum possible point-biserial correlations with complete dichotomous data for items with different p-values relative to a normally-distributed sample of person abilities.

a. When item response residuals are noisy, disturbed by unexpected variation, they contradict the item's calibration. This makes the item rpbis smaller than typical of these data and the item RFS larger than expected statistically.

b. When item response residuals are muted, subdued by unexpected lack of variation, they indicate a contraction from the modelled level of independence among residuals and hence an underestimation of standard errors of measurement based on this model. This makes the item rpbis larger than typical of these data and the item RFS smaller than expected statistically.

There is an important difference in the utility of these alternative fit statistics. For the rpbis based on raw scores, the most we can say is "smaller (or larger) than we are used to". We don't know where the value we are observing is placed in the possible range. We don't know whether that value is acceptable, undesirably large or undesirably small. The rpbis is a misfit statistic but of unknown size and significance. All we know for certain, (and this is useful in detecting miscoded data), is that negative rpbis means that the observed responses to that item contradict the general meaning of the test.

For RFS based on a measurement system, we can say - "larger (or smaller) than expected statistically". The basis for expectation is a statistical model for a standard distribution of residuals. RFS give a size and a significance to misfit. The size enables us to identify misfit big enough to disturb measurement. The significance indicates what proportion of all possible misfit statistics would be better fitting than this one.

One author writes: "Ideally, it is recommended that items have point-biserials ranging from 0.30 to 0.70 (Allen, M. J. and Yen, W. M. (1979). Introduction to Measurement Theory. Waveland Press, Inc. Prospect Heights Il)".
A rule such as this cuts off the very easy and very hard items, and may even eliminate good-fitting on-target items.

Point-biserials and item fits. Wright BD. … Rasch Measurement Transactions, 1992, 5:4 p.174




Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt54a.htm

Website: www.rasch.org/rmt/contents.htm