Convergence: Statistics or Substance?

The RMT articles describes a situation common to all estimation processes which use an iterative technique. The convergence criteria must be set tight enough for the problem at hand. Iterative processes are used widely in statistics and engineering. If in doubt, set the convergence criteria too tight. The only down-side may be that the analysis takes longer to run than necessary.

Estimation frequently requires iterative procedures: the more iterations, the more accurate estimates. But when are estimates accurate enough? When can iteration cease? My the rule has become "Convergence is reached when more iterations do not change my interpretation of the estimates".

There is a trade-off between accuracy and speed. Greater accuracy requires more iterations - more time and computer resources. The specification of estimation accuracy is a compromise. Frequently, squeezing that last bit of inaccuracy out of estimates only affects the least significant digits of printed output, has no noticeable effect on model-data fit, and does not alter interpretation. Three numerical convergence rules are often employed:

1) Estimates are pronounced "accurate enough" when a predetermined "maximum" number of iterations have been performed.

2) Estimates are deemed converged when no estimate changes more than a small pre-set "tolerance" value during an iteration.

3) Estimates have converged when there is less residual difference between the observed data and that expected than can actually be observed.

Be wary! In a recent analysis of responses to a set of math tests, linked in block diagonal matrix form, I set these three convergence criteria to reasonable values. The computer program BIGSTEPS ran smoothly. All appeared well. The outcome is shown in Figure 1. As most of us would expected, both the 2995 children and the 1031 math items appear close to normally distributed. The children were from 9 grades, so the spread of 7 logits across the examinees could be right.

A question arose, however, when I went back and inspected the linking design. Children in the lower and higher grades had been deliberately over-sampled in order to get good child measures and item calibrations at the extremes. Yet this bias towards the extremes does not appear in Figure 1!

After eliminating other theories for this unexpected result, suspicion focussed on the analysis itself. Perhaps the familiar values for the convergence criteria were not stringent enough in this case. Accordingly, the criteria were made more stringent, and estimates were again obtained. The initial run used 50 iterations. The revised run, 263 iterations. The second outcome is shown in Figure 2. Now both the child and item distributions are clearly bimodal. The range of child abilities is about 9 logits, an increase of 2 logits. This result makes much better sense.

Establishing convergence is more than a statistical nicety. It can have profound substantive implications.

Ong Kim Lee

                       CHILDREN     MATH ITEMS
 5                             . +
                               . +
                               . +
 4                             . + #.
                             .## + #
                            .### + ####
 3                       .###### + ######.
                     .########## + ##############.
                   .############ + ##############.
 2              .############### + ##################.
       .######################## + ###############.
      .######################### + #################
 1   .########################## + #######################.
    .########################### + ######################.
   ############################# + ##########################
 0     .######################## + #########################
      .######################### + ######################
     .########################## + ####################.
-1        .##################### + ###############.
                .############### + ##################.
                   .############ + ###################.
-2                    .######### + ##################.
                          .##### + ############.
                            .### + ############
-3                            .# + #####.
                               . + ####
                                 + ##.
-4                               + #.
                                 + #
                                 + .
-5                               +
                                 +
                                 +
-6                               + .
                       CHILDREN  +  MATH ITEMS

Figure 1. Statistically converged estimates.

                         PERSONS +   ITEMS
 5                           ### + ###
                            .### + ##
                          .##### + #########
 4                   .########## + ################.
                     .########## + #################.
                 .############## + #####################.
 3             ################# + ######################
          .##################### + ################
          .##################### + ##################.
 2         .#################### + #####################
         ####################### + ######################
              .################# + ###################
 1              .############### + ################.
                .############### + #############.
                    .########### + #####################.
 0          .################### + ######################.
          .##################### + ###################.
        .####################### + #####################.
-1      .####################### + #######################
         .###################### + ###################
      .######################### + ########################
-2       .###################### + #######################
               .################ + #######################.
                  .############# + ####################.
-3                   .########## + ##########################
                        .####### + ###############.
                          .##### + ##############
-4                            .# + ######
                               # + ########
                                 + ###
-5                               + #.
                                 + ###
                                 + #
-6                               +
                         PERSONS +   ITEMS

Figure 2. Substantively converged estimates.



Convergence: Statistics or Substance?, O K Lee … Rasch Measurement Transactions, 1991, 5:3 p. 172




Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt53l.htm

Website: www.rasch.org/rmt/contents.htm