Beyond Partial Credit: Rasch Success and Failure Models

The extraction of measures from rating scale observations (Andrich 1978) and from items scored for partial credit (Masters 1982) was a major conceptual and statistical advance. Now a wide variety of measurement models for attitude and intermediate levels of performance have followed (Glas, Verhelst 1991; Verhelst, Glas, de Vries, 1997; Linacre 1991). Here are two of these compared with their Andrich/Masters progenitors.

Glas-Verhelst "Success" models growth. Higher steps are administered only after success on lower ones. Persons who fail ("0") on Step 1, do not qualify for Step 2 or Step 3, and have no opportunity to respond to them. This results in missing ("M") responses, rather than pre-determined failures. Each rating level implies a particular count of dichotomous item-step successes based on the administration of a particular number of steps. Introducing higher levels does not alter the calibration or success probability of lower levels. Higher levels can be added, eliminated, combined or redefined without affecting lower level structure. Examples are high-jumping and weight-lifting competitions.

Linacre "Failure" models mastery, as in answer-until-correct and where later tasks are presented only when earlier tasks are failed. The "Failure" model is the reverse of the "Success" model. Lower steps are administered only after failure on higher steps. Step 2 is administered only when Step 3 has been failed. A success on Step 3 means that Steps 1 and 2 are not administered. This results in missing, "M", rather than pre-determined successes. Introducing lower levels does not alter the calibration or success probability of the higher steps. Examples are answer-until-correct and a baseball at-bat.

Andrich "Rating Scale" and Masters "Partial Credit" model attitude and other closed rating scales. The selection of a level implies a position along a complete continuum. Since the scale can be understood as ascent from the bottom, descent from the top, or digression from the center, the levels specify a conceptual hierarchy, but do not require a path that must be followed. The algebraic representation as ascent is only a mathematical convenience. Adding an extra level redefines the rating scale and alters the calibrations and probability of attainment of every step. Examples are attitude surveys and employee performance ratings.

Later note: My experience is that it is better to analyze Success and Failure attempts as a standard rating scale. There are usually too many extraneous factors for pure Success or Failure models to function effectively.

Andrich D 1978. A rating formulation for ordered response categories. Psychometrika 43 561-573

Masters GN 1982. A Rasch model for partial credit scoring. Psychometrika 47 149-174

Glas CAW & Verhelst ND 1991. Using the Rasch model for dichotomous data for analyzing polytomous responses. Measurement & Research Dept Report 91-3. Arnhem, The Netherlands: CITO

Kutylowski A 1991 Sequential Models for Rating Scales, Rasch Measurement Transactions, 5:3 p. 161

Linacre JM 1991. Structured rating scales. Sixth International Objective Measurement Workshop. April. Chicago. ERIC TM 016615

Verhelst N.D., Glas C.A.W. & De Vries H.H. (1997) A Steps model to analyze partial credit. In W.J. van der Linden & R.K. Hambleton (Eds.), Handbook of modern item response theory (pp. 123 - 138) New York: Springer.

-----------------------------------------------------
Observed       Implied            Response
Score          Dichotomies        Interpretation
-----------------------------------------------------
      Glas-Verhelst  "Success" ("Steps" model)
----------------------------------------------------
Rating    Step  Step  Step     Steps  Successes
level      1      2    3       Tried  Scored
----------------------------------------------------
3-Hard     1      1    1         3      3
 2         1      1    0         3      2
 1         1      0    M         2      1
0-Easy     0      M    M         1      0
----------------------------------------------------

      Linacre "Failure"	model
----------------------------------------------------
Rating    Step  Step  Step     Steps  Successes
level      1      2    3       Tried  Scored
----------------------------------------------------
3-Hard     M      M    1         1      1
 2         M      1    0         2      1
 1         1      0    0         3      1
0-Easy     0      0    0         3      0
----------------------------------------------------

       Andrich "Rating Scale" model
       Masters "Partial Credit" model
----------------------------------------------------
Rating    Step  Step  Step     Steps  Successes
level      1      2    3       Tried  Scored
----------------------------------------------------
3-Hard     1      1    1         3      3
 2         1      1    0         3      2
 1         1      0    0         3      1
0-Easy     0      0    0         3      0
----------------------------------------------------

Key: 1=Passed, 0=Failed, M=Not administered



Beyond Partial Credit: Rasch Success and Failure Models, J Linacre … Rasch Measurement Transactions, 1991, 5:2 p. 155




Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt52j.htm

Website: www.rasch.org/rmt/contents.htm