CAT with a Poorly Calibrated Item Bank

A dogma of CAT is that "good estimates of the item parameters are required" (Vale & Giaculla 1988). But how good? The practical answer, namely, that an educated guess is good enough (Wright & Panchapakesan, 1969; Wright & Douglas, 1976), has been confirmed again.

The U.S. Department of Education is supporting the development of a Mac-based CAT program for literacy in Chinese. The graphics of the Mac make displaying Chinese characters easy. Hypercard software is ideal for administering multiple-choice items. All that is needed is a Hypercard algorithm for item administration and person measurement.

Before data were collected, Chinese language experts categorized 69 newly-written test items according to 9 levels of GSA language proficiency. These conceptual levels served as the assigned item difficulty calibrations.

A simple two-stage CAT "Step Ladder" algorithm was used (Henning 1987 p.138). First, an easy, medium and hard item were administered to determine which of the 9 levels was the best starting level for the second phase. Then item administration began at the indicated starting level. Success raised the level of administration, failure lowered it. The test stopped when the examinee achieved over 50% success (including at least four correct responses) at one level, but less than 50% success (including at least four incorrect responses) at the level above. The examinee's GSA rating was this "success" level.

The psychometric question is how much does this non-empirical assigned calibration of the items distort the person measures? Two Rasch analyses were performed. The first produced measures for the 30 examinees based on the assigned calibrations with levels placed an arbitrary 0.75 logits apart. The second produced person measures and empirical item calibrations based solely on the responses. Figure 1 plots the alternative item calibrations against one another. The assigned mis-calibration of certain items is clear. The average absolute item calibration difference is 1.0 logits, showing that the assigned calibration was a poor predictor of empirical calibration. Figure 2 plots the alternative sets of person measures against one another. None of these points lie outside 95% confidence bands. Note that none are significantly different. The slight non-linearity of the measures is caused by the arbitrary 0.75 logit spacing of the assigned levels. Conclusion: precise item calibration is not required for usefully accurate CAT person measurement!

Henning G 1987. A guide to language testing. Cambridge, Mass.: Newbury House

Vale CD & Giaculla KA 1988. Evaluation of the efficiency of item calibration. Applied Psychological Measurement 12 53-67.

Wright B & Panchapakesan N 1969. A procedure for sample-free item analysis. Educational & Psychological Measurement 29 1 23-48

Wright B & Douglas G 1975. Best test design and self-tailored testing. MESA Memorandum No. 19. Department of Education, Univ. of Chicago

Wright, B. D. & Douglas, G. A. Rasch item analysis by hand. Research Memorandum No. 21, Statistical Laboratory, Department of Education, University of Chicago, 1976

Wright & Douglas(1976) "Rasch Item Analysis by Hand": "In other work we have found that when [test length] is greater than 20, random values of [item calibration] as high as 0.50 have negligible effects on measurement."

Wright & Douglas (1975) "Best Test Design and Self-Tailored Testing": "They allow the test designer to incur item discrepancies, that is item calibration errors, as large as 1.0. This may appear unnecessarily generous, since it permits use of an item of difficulty 2.0, say, when the design calls for 1.0, but it is offered as an upper limit because we found a large area of the test design domain to be exceptionally robust with respect to independent item discrepancies."

Wright & Stone (1979) "Best Test Design" p.98 - "random uncertainty of less than .3 logits," referencing MESA Memo 19: Best Test and Self-Tailored Testing. Benjamin D. Wright & Graham A. Douglas, 1975 . Also .3 logits in Solving Measurement Problems with the Rasch Model. Journal of Educational Measurement 14 (2) pp. 97-116, Summer 1977 (and MESA Memo 42)


Figure 1. Plot of item calibrations.


Figure 2. Plot of person measures



CAT with a Poorly Calibrated Item Bank, T Yao & J.M. Linacre … Rasch Measurement Transactions, 1991, 5:2 p. 141




Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt52b.htm

Website: www.rasch.org/rmt/contents.htm