Descriptive IRT vs. Prescriptive Rasch

Item response theory (IRT) generally refers to three probabilistic measurement models: the 1-parameter (identical to the dichotomous Rasch model), the 2-parameter, and the 3-parameter, named by the number of item parameters estimated in each model. All three models can be specified from a single probabilistic function for the occurrence of a right answer by a person to an item:

P(x=1) = ci - (1-ci) exp (ai(t-bi)) / (1 + exp (ai(t-bi)))

where the three item parameters are
ci = low asymptote of ogive (guessing)
bi = median intercept of ogive (difficulty)
ai = slope of ogive at inflection (discrimination)
and the one person parameter is
t = ability of a person on the variable.

Making ci constant produces 2-parameter estimation. Making ai constant produces 1-parameter estimation.

This approach seems to imply that the Rasch model is just a stripped- down version of more complicated models which "must be better" because they account for more of the "presumed reality" of traditional test theory. Quite apart from Occam's razor (that entities are not multiplied beyond necessity), this interpretation is shallow in an essential way. That the Rasch model can be reached by simplifying more complicated models has nothing to do with its genesis or rationale, or with the theory of measurement.

The Rasch model is not intended to fit data or to be evaluated by how well it fits any particular data set. The Rasch model is a definition of measurement derived from the universally accepted measurement requirements that:

1. The measures of objects be free of the particulars of the agents used to estimate these measures and the calibrations of agents be free of the particulars of the objects used to estimate these calibrations.

2. The measures of objects and calibrations of agents function according to the rules of arithmetic on a common scale so that they can be analyzed statistically.

3. Linear combinations of measures and calibrations correspond to plausible concatenations of objects and agents.

Introducing the superfluous parameters, ai and ci, violates these requirements and disqualifies the resulting contrivances as "measurement" models. Were the values of t known prior to analysis, the 2- and 3-parameter formulations could be used to specify two, among many possible, logistic regressions, as they have been in biometric analysis for 60 years. When t is not known and must be estimated from the same data, as is the case for measurement, then it can be demonstrated algebraically that the parameter estimates must diverge unless constrained in an arbitrary manner.

In practice, arbitrary interference, such as limiting the range of ai and ci, does not produce sample-free item calibrations or test-free person measures - unless ai and ci are restricted to constants, when, of course, the formulation becomes a Rasch model and functions accordingly. This is the misunderstanding of those who claim the 2- and 3-parameter computer programs "work". In the few instances where serious 2- and 3-parameter results are reported, their quality is proportional to the extent to which ai and ci were kept from varying - from being influenced by the data. Indeed all important practical IRT applications reported at the 1991 AERA meeting were implemented by the Rasch model.

In theory and in practice, the Rasch model is a unique measurement archetype.



Descriptive IRT vs. Prescriptive Rasch, F Shaw … Rasch Measurement Transactions, 1991, 5:1 p. 131




Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt51f.htm

Website: www.rasch.org/rmt/contents.htm