Rasch Estimation with Unobserved or Null Categories

With any set of polytomous items, where all response categories are logically possible for each item, it will sometimes happen that certain categories are unused in the immediate sample of data. This sample characteristic can not be allowed to interfere with a response framework which is a characteristic of the research design. The distinction between a logically null category and a category that is observed to be null in some sample is analogous to the distinction between a structural zero and a sampling zero in contingency table analysis (Fienberg 1985). When a category is not used for a particular item, we would not recommend omitting reference to that category by down-coding the categories above it, such as is the default in many Rasch analysis programs. This kind of down-coding can alter a person's ranking on a test. Of course, when a sampling zero occurs repeatedly for a particular item, it is wise to examine the item for an explanation.

A simple modification of the Partial Credit model retains all categories so that none are "collapsed" out (Wilson & Masters 1991). This reformulation has been incorporated into several Rasch programs. The partial-credit scale has categories 0 to mi. If z is the category corresponding to a sampling zero (with local probability of zero) and categories z-1 and z+1 are present in the data, then, in the notation of Wright & Masters (1982),

Pnix = exp(sum j=0 to x (except z) (Bn - Dij) /
      sum k=0 to mi (except z) (exp (sum j=0 to k (except z) ((Bn - Dij) )

with Pniz locally zero.


The full set of Andrich thresholds can be approximated by:
D' = Diz-1, iz+1 skipping over Diz
Di1, Di2, ..., Diz-1, Diz=D'+40, Diz+1=D'-40, ... Dmi
then Pniz ≈ 0

Example: if a dichotomous 0,1 observation is recoded as a polytomous 0,(1),2 observation, where 1 is unobserved, then
For 0-1 the Andrich threshold is 0 relative to the item difficulty.
For 0-(1)-2 the Andrich thresholds are 40, -40 relative to the same item difficulty.

See also: Unobserved categories: Estimating and anchoring Rasch Measures. RMT 17:2 p. 924-925



Rasch Estimation with Unobserved or Null Intermediate Categories, M Wilson … Rasch Measurement Transactions, 1991, 5:1 p. 128




Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt51b.htm

Website: www.rasch.org/rmt/contents.htm