Rasch Estimates for Standard Datasets

Let's build a library of standard datasets and their Rasch estimates. These can be used to confirm that Rasch software is functioning correctly and also for teaching about Rasch estimation.

Estimation method:
AMLE = Anchored Maximum Likelihood Estimation (MLE for estimating person abilities with known item difficulties)
CMLE = Conditional Maximum Likelihood Estimation (R- eRm, WINMIRA)
JMLE = Joint Maximum Likelihood Estimation (R-mixRasch, Winsteps) - no correction for estimation bias
MMLE = Marginal Maximum Likelihood Estimation (R-ltm, ConQuest)
PMLE = Pairwise Maximum Likelihood Estimation (R-pairwise, RUMM2030)
WMLE = Warm's Mean Likelihood Estimation (applied to MLE estimates)

All estimates are in logits. The estimate for column 1 (item 1) is set to 0.0 logits.


Standard dataset 1:
Complete dichotomous dataset of 2 columns (items) and 2 rows (persons):
0,1
1,0

All Rasch estimation methods: column estimates: 0.0, 0.0 ; row estimates: 0.0, 0.0.


Standard dataset 2:
Complete dichotomous dataset of 2 columns (items) and 3 rows (persons):
0,1
1,0
0,1

CMLE column estimates: 0.00000, -0.69315
AMLE row estimates: -0.34658, -0.34658, -0.34658

JMLE column estimates: 0.00000, -1.38629
JMLE row estimates: -0.69315, -0.69315, -0.69315

MMLE column estimates: 0.00000, -1.38629
AMLE row estimates: -0.69315, -0.69315, -0.69315

PMLE column estimates: 0.00000, -0.69315
AMLE row estimates: -0.34658, -0.34658, -0.34658


Standard dataset 3:
Complete dichotomous dataset of 3 columns (items) and 3 rows (persons):
1,0,0
0,1,1
0,1,1

CMLE column estimates: 0.00000, -1.00505, -1.00505
AMLE row estimates: -1.40449, 0.05635, 0.05635
WMLE row estimates: -1.17098, -0.18498, -0.18498

JMLE column estimates: 0.00000, -1.56593, -1.56593
JMLE row estimates: -1.84142, -0.27549, -0.27549
WMLE row estimates: -1.63506, -0.50850, -0.50850

MMLE column estimates: 0.00000, -1.38629, -1.38629
AMLE row estimates: -1.69820, -0.17070, -0.17070
WMLE row estimates: -1.48169, -0.40644, -0.40644

PMLE column estimates: 0.00000, -0.69315, -0.69315
AMLE row estimates: -1.17436, 0.24746, 0.24746
WMLE row estimates: -0.93166, 0.00210, 0.00210


Standard Dataset 4: Rating Scale
8 persons (rows) respond to 8 items (columns) on a 0-3 rating scale:

10000000
00210203
02001113
01012123
00122033
02110333
00123333
03333332
or
1,0,0,0,0,0,0,0
0,0,2,1,0,2,0,3
0,2,0,0,1,1,1,3
0,1,0,1,2,1,2,3
0,0,1,2,2,0,3,3
0,2,1,1,0,3,3,3
0,0,1,2,3,3,3,3
0,3,3,3,3,3,3,2

The row (column) totals are 1, 8, 8, 10, 11, 13, 15, 20

This data matrix is symmetric. In principle, person (row) and item (column) standard deviations (S.D.) are the same.

Rasch logit estimates: Andrich Rating Scale Model, "Restricted" Model
Estimation methodSoftware Item difficulties = Columns Person abilities (thetas)= Rows Andrich ThresholdsAnalyst
MeanPopn. S.D.Sample S.D. MeanPopn. S.D.Sample S.D. 123
JMLE Winsteps .00 1.33 1.42 -.39 1.33 1.42 -.39 .14 .25 J.M. Linacre
JMLE jMetrik .00 1.3793 -.3831 1.3801 -.35 .14 .21 Dr. Bill Plummer
Priyanka
JMLE mixRasch (R) .00 1.382 -.3837 1.3821 -.35 .14 .21 Vernon Mogol
            


Standard Dataset 5: The LSAT Dichotomous Data
1000 persons (rows) respond to 5 items (columns) scored 0-1:

The data matrix is here.

No estimates received yet.


Comments, corrections and suggestions for more standard datasets are welcome.

John Michael Linacre
mike \at/ winsteps.com


Rasch Estimates for Standard Datasets. Linacre JM. … Rasch Measurement Transactions, 2014, 28:1 p. 1453-4




Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt83g.htm

Website: www.rasch.org/rmt/contents.htm