World Standards Day Celebration: Rasch Measurement as a Basis for a New Standards Framework

The 2011 U.S. celebration of World Standards Day took place on October 13 at the Fairmont Hotel in Washington, D.C., with the theme of "Advancing Safety and Sustainability Standards Worldwide." The evening began with a reception in a hall of exhibits from the celebrations sponsors, which included the National Institute for Standards and Technology (NIST), the Society for Standards Professionals (SES), the American National Standards Institute (ANSI), Microsoft, IEEE, Underwriters Laboratories, the Consumer Electronics Association, ASME, ASTM International, Qualcomm, Techstreet, and many others. Several speakers took the podium after dinner to welcome the 400 or so attendees and to present the World Standards Day Paper Competition Awards and the Ronald H. Brown Standards Leadership Award.

Dr. Patrick Gallagher, Under Secretary of Commerce for Standards and Technology, and Director of NIST, was the first speaker after dinner. He directed his remarks at the value of a decentralized, voluntary, and demand-driven system of standards in promoting innovation and economic prosperity. Gallagher emphasized that "standards provide the common language that keeps domestic and international trade flowing," concluding that "it is difficult to overestimate their critical value to both the U.S. and global economy."

James Shannon, President of the National Fire Protection Association (NFPA), accepted the R. H. Brown Standards Leadership Award in recognition for his work initiating or improving the National Electrical Code, the Life Safety Code, and the Fire Safe Cigarette and Residential Sprinkler Campaigns.

Ellen Emard, President of SES, introduced the paper competition award winners. As of this writing the titles and authors of the first and second place awards are not yet available on the SES web site (www.ses-standards.org/displaycommon.cfm?an=1&subarticlenbr=56). Third place was awarded to William P. Fisher, Jr., for his paper, "What the World Needs Now: A Bold Plan for New Standards." Where the other winning papers took up traditional engineering issues concerning the role of standards in advancing safety and sustainability issues, Fisher's paper spoke to the potential scientific and economic benefits that could be realized by standard metrics and common product definitions for outcomes in education, health care, social services, and environmental resource management. All three of the award-winning papers will appear in a forthcoming issue of Standards Engineering, the journal of SES.

Fisher was coincidentally seated at the dinner alongside Gordon Gillerman, winner of third place in the 2004 paper competition (Gillerman, 2004) and currently Chief of the Standards Services Division at NIST. Gillerman has a broad range of experience in coordinating standards across multiple domains, including environmental protection, homeland security, safety, and health care. Having recently been involved in a workshop focused on measuring, evaluating, and improving the usability of electronic health records (Gillerman, 2011). Gillerman was quite interested in the potential Rasch measurement techniques hold for reducing data volume with no loss of information, and so for streamlining computer interfaces.

Robert Massof of Johns Hopkins University accompanied Fisher to the dinner, and was seated at a nearby table. Also at Massof's table were several representatives of the National Institute of Building Sciences, some of whom Massof had recently met at a workshop on adaptations for persons with low vision disabilities. Massof's work equating the main instruments used for assessing visual function in low vision rehabilitation could lead to a standard metric useful in improving the safety and convenience of buildings.

As is stated in educational materials distributed at the World Standards Day celebration by ANSI, standards are a constant behind-the-scenes presence in nearly all areas of everyday life. Everything from air, water, and food to buildings, clothing, automobiles, roads, and electricity are produced in conformity with voluntary consensus standards of various kinds. In the U.S. alone, more than 100,000 standards specify product and system features and interconnections, making it possible for appliances to tap the electrical grid with the same results no matter where they are plugged in, and for products of all kinds to be purchased with confidence. Life is safer and more convenient, and science and industry are more innovative and profitable, because of standards.

The point of Fisher's third-place paper is that life could be even safer and more convenient, and science and industry could be yet more innovative and profitable, if standards and conformity assessment procedures for outcomes in education, health care, social services, and environmental resource management were developed and implemented. Rasch measurement demonstrates the consistent reproducibility of meaningful measures across samples and different collections of construct-relevant items. Within any specific area of interest, then, Rasch measures have the potential of serving as the kind of mediating instruments or objects recognized as essential to the process of linking science with the economy (Fisher & Stenner, 2011b; Hussenot & Missonier, 2010; Miller & O'Leary, 2007). Recent white papers published by NIST and NSF document the challenges and benefits likely to be encountered and produced by initiatives moving in this direction (Fisher, 2009; Fisher & Stenner, 2011a).

A diverse array of Rasch measurement presentations were made at the recent International Measurement Confederation (IMEKO) meeting of metrology engineers in Jena, Germany (see RMT 25 (1), p. 1318). With that start at a new dialogue between the natural and social sciences, and with the award in the World Standards Day paper competition, the U.S. and international standards development communities have shown their interest in exploring possibilities for a new array of standard units of measurement, standardized outcome product definitions, standard conformity assessment procedures, and outcome product quality standards. The increasing acceptance and recognition of the viability of such standards is a logical consequence of observations like these:

"Where this law [relating reading ability and text difficulty to comprehension rate] can be applied it provides a principle of measurement on a ratio scale of both stimulus parameters and object parameters, the conceptual status of which is comparable to that of measuring mass and force. Thus...the reading accuracy of a child...can be measured with the same kind of objectivity as we may tell its weight" (Rasch, 1960, p. 115).

"Today there is no methodological reason why social science cannot become as stable, as reproducible, and hence as useful as physics" (Wright, 1997, p. 44).

"...when the key features of a statistical model relevant to the analysis of social science data are the same as those of the laws of physics, then those features are difficult to ignore" (Andrich, 1988, p. 22).

Rasch's work has been wrongly assimilated in social science research practice as just another example of the "standard model" of statistical analysis. Rasch measurement rightly ought instead to be treated as a general articulation of the three-variable structure of natural law useful in framing the context of scientific practice. That is, Rasch's models ought to be employed primarily in calibrating instruments quantitatively interpretable at the point of use in a mathematical language shared by a community of research and practice. To be shared in this way as a universally uniform coin of the realm, that language must be embodied in a consensus standard defining universally uniform units of comparison.

Rasch measurement offers the potential of shifting the focus of quantitative psychosocial research away from data analysis to integrated qualitative and quantitative methods enabling the definition of standard units and the calibration of instruments measuring in that unit. An intangible assets metric system will, in turn, support the emergence of new product- and performance-based standards, management system standards, and personnel certification standards. Reiterating once again Rasch's (1960, p. xx) insight, we can acknowledge with him that "this is a huge challenge, but once the problem has been formulated it does seem possible to meet it."

William P. Fisher, Jr.

Andrich, D. (1988). Rasch models for measurement. (Vols. series no. 07-068). Sage University Paper Series on Quantitative Applications in the Social Sciences. Beverly Hills, California: Sage Publications.

Fisher, W. P.. Jr. (2009). Metrological infrastructure for human, social, and natural capital (NIST Critical National Need Idea White Paper Series). Washington, DC: National Institute for Standards and Technology. Retrieved 25 October 2011 from www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf

Fisher, W. P., Jr., & Stenner, A. J. (2011a, January). Metrology for the social, behavioral, and economic sciences (Social, Behavioral, and Economic Sciences White Paper Series). Washington, DC: National Science Foundation. Retrieved 25 October 2011 from www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36.

Fisher, W. P., Jr., & Stenner, A. J. (2011b). A technology roadmap for intangible assets metrology. In Fundamentals of measurement science. International Measurement Confederation (IMEKO), Jena, Germany, August 31 to September 2.

Gillerman G. (2004) Making the Confidence Connection: Conformity Assessment System Design. www.ses-standards.org/associations/3698/files/WSD%202004%20-%203%20-%20Gillerman.pdf

Gillerman (G. 2011) Collaboration and Consensus through Standards - The National Technology Transfer and Advancement Act. www.nist.gov/healthcare/usability/upload/EHR-Usability-Workshop-2011-6-03-2011_final.pdf

Hussenot, A., & Missonier, S. (2010). A deeper understanding of evolution of the role of the object in organizational process. The concept of 'mediation object.' Journal of Organizational Change Management, 23(3), 269-286.

Miller, P., & O'Leary, T. (2007, October/November). Mediating instruments and making markets: Capital budgeting, science and the economy. Accounting, Organizations, and Society, 32(7-8), 701-34.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.

Wright, B. D. (1997, Winter). A history of social science measurement. Educational Measurement: Issues and Practice, 16(4), 33-45, 52 [www.rasch.org/memo62.htm]

Report of meeting by ANSI: "U.S. Standards Community Celebrates World Standards Day 2011" webstore.ansi.org/NewsDetail.aspx?NewsGuid=590a225c-d779-4f81-804e-4d05ef239c37



World Standards Day Celebration: Rasch Measurement as a Basis for a New Standards Framework, William P. Fisher, Jr. ... Rasch Measurement Transactions, 2011, 25:3, 1332-3




Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt253c.htm

Website: www.rasch.org/rmt/contents.htm