Gilles Raîche in RMT 19:1 p. 102 reports eigenvalues in the range 1.4 to 2.1 for the first component in a PCA of inter-item correlations of standardized residuals of Rasch-fitting data. Test lengths were in the range 20 to 60 items.
Here those findings are extended to dichotomous and polytomous data with test lengths from 3 to 1000 items. The generating person sample of 1000 persons has a normal distribution with a mean of 0 logits and a standard deviation of 2 logits. The generating item distribution is uniform from -2 to +2 logits. For the 5-category polytomous data, the generating Rasch-Andrich thresholds are: -2.53, -0.35, 0.56, 2.32 logits. The Figures shows the eigenvalues sizes of the first components (contrasts) in a PCA of the standardized-residual item-correlation matrices.
For the dichotomous simulations, the eigenvalue increases from 1.3 for 3 items to 4.0 for 1000 items. For 5-category polytomous items, the eigenvalues have the same range.
John Michael Linacre
"Monte Carlo PCA for Parallel Analysis" is Marley Watkins' free software for performing this type of investigation using simulated random-normal deviates, which standardized residuals approximate. For 200 items (variables) and 1000 persons (subjects), that software reports that the first PCA component in the random-normal deviates has an eigenvalue of 2.05 which accords with the findings above.
Alan Tennant
Linacre J.M., Tennant A. (2009) More about Critical Eigenvalue Sizes (Variances) in Standardized-Residual Principal Components Analysis (PCA), Rasch Measurement Transactions, 2009, 23:3, 1228
Forum | Rasch Measurement Forum to discuss any Rasch-related topic |
Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement
Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.
Coming Rasch-related Events | |
---|---|
Apr. 21 - 22, 2025, Mon.-Tue. | International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net |
Jan. 17 - Feb. 21, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
Feb. - June, 2025 | On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia |
Feb. - June, 2025 | On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia |
May 16 - June 20, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
June 20 - July 18, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com |
Oct. 3 - Nov. 7, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
The URL of this page is www.rasch.org/rmt/rmt233f.htm
Website: www.rasch.org/rmt/contents.htm