It should be noted that cA is conceptually closer to a real "guessing" parameter in the Birnbaum PRFs, and that αA represents person sensitivity to a particular subset of items.
Engelhard (in progress) describes five requirements of invariant measurement that must be met to yield useful inferences for measurement in the social, behavioral, and health sciences. These five requirements are
1. The measurement of persons must be independent of the particular items that happen to be used for the measuring: Item-invariant measurement of persons.
2. A more able person must always have a better chance of success on an item than a less able person: non-crossing person response functions.
3. The calibration of the items must be independent of the particular persons used for calibration: Person-invariant calibration of test items.
4. Any person must have a better chance of success on an easy item than on a more difficult item: non-crossing item response functions.
5. Items must be measuring a single underlying latent variable: unidimensionality.
Requirements 1 and 2 address issues related to PRFs.
The Figure illustrates the effects of crossing PRFs. Three PRFs were constructed for two situations: Rasch PRFs that do not cross (Panel A) and Birnbaum PRFs that do cross (Panel B). As shown in Panel C, non-crossing PRFs yield comparable person locations over subsets of items centered around easy items (-2 logits) to hard items (+2 logits). If PRFs do not cross, then Persons A, B, and C are ordered in the same way across item subsets. In other words, item-invariant measurement is achieved with the Rasch model.
Crossing PRFs based on the Birnbaum model (Panel D) yield person ordering that varies as a function of the difficulty of the item subsets. For example, Person A is the lowest achieving person with the lowest probability of success on the easy items, while Person A is the highest achieving person on the hard items. Easy item subsets yield persons ordered as A < B < C, while hard item subsets yield persons ordered B < C < A. In other words, the ordering of persons is not invariant over item subsets with the Birnbaum model.
This note calls attention to the idea that model-data fit can be conceptualized in terms of both IRFs and PRFs (Engelhard, in press). Typically IRFs and differential item functioning analyses are explored. Our work suggests that researchers should also begin to think more systematically about differential person functioning. It is important to recognize the items may function differently over different subgroups of persons (differential item functioning), but it is also important to recognize that persons may not function as intended in their interactions with subsets of test items (differential person functioning).
Aminah Perkins & George Engelhard, Jr.
Emory University, Division of Educational Studies
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability, Part 5. In F.M. Lord and M.R. Novick (Eds.), Statistical theories of mental test scores. Reading, MA: Addison-Wesley Publishing Company, Inc.
Engelhard, G. (in progress). Invariant measurement: Rasch models in the social, behavioral, and health sciences. New York: Routledge.
Engelhard, G. (in press: available online). Using item response theory and model-data fit to conceptualize differential item and person functioning for students with disabilities. Educational and Psychological Measurement.
Mosier, C.I. (1940). Psychophysics and mental test theory: Fundamental postulates and elementary theorems. Psychological Review, 47, 355-366.
Mosier, C.I. (1941). Psychophysics and mental test theory. II. The constant process. Psychological Review, 48, 235-249.
Wright, B.D. (1992). IRT in the 1990s: Which Models Work Best? Rasch Measurement Transactions, 6:1, 196-200, www.rasch.org/rmt/rmt61a.htm
Wright, B.D. (1997). A history of social science measurement. Educational Measurement: Issues and Practice, Winter, 33- 45, 52.
Perkins A. & Engelhard, G. Jr. (2009) Crossing Person Response Functions, Rasch Measurement Transactions, 2009, 23:1, 1183-4
Rasch Books and Publications |
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang |
Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene |
Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver |
Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone |
Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale |
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes |
Statistical Analyses for Language Testers (Facets), Rita Green |
Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind |
Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M |
Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland |
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind |
Rasch Measurement: Applications, Khine |
Winsteps Tutorials - free
Facets Tutorials - free |
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre |
Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan |
Other Rasch-Related Resources: Rasch Measurement YouTube Channel |
Rasch Measurement Transactions &
Rasch Measurement research papers - free |
An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse |
Rasch Measurement Theory Analysis in R, Wind, Hua |
Applying the Rasch Model in Social Sciences Using R, Lamprianou |
El modelo métrico de Rasch:
Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition),
Manuel González-Montesinos M. |
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar |
Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch |
Rasch Models for Measurement, David Andrich |
Constructing Measures, Mark Wilson |
Best Test Design - free, Wright & Stone Rating Scale Analysis - free, Wright & Masters |
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias |
Diseño de Mejores Pruebas - free, Spanish Best Test Design |
A Course in Rasch Measurement Theory, Andrich, Marais |
Rasch Models in Health, Christensen, Kreiner, Mesba |
Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen |
Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement
Go to Institute for Objective Measurement Home Page.
The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.
Coming Rasch-related Events |
Apr. 21 - 22, 2025, Mon.-Tue. | International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net |
Jan. 17 - Feb. 21, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
Feb. - June, 2025 | On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia |
Feb. - June, 2025 | On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia |
May 16 - June 20, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
June 20 - July 18, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com |
Oct. 3 - Nov. 7, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
The URL of this page is
www.rasch.org/rmt/rmt231a.htm
Website: www.rasch.org/rmt/contents.htm