Assessing Psychiatric Patient Self-Awareness Behavior with Many-Facet Rasch Analysis

The Many-Facet Rasch Model (MFRM) has the great advantage for clinical practice that it allows the practitioner not only to examine and assess the patient behavior patterns, but also to analyze the patient behavior on different occasions. In this study, building on previous research (e. g. Rangell, 1981; Markova & Berrios, 1995) and on psychiatric practice, the Psychiatric Patient Self-Awareness (PPSA) behavior is identified through five self-awareness indexes, namely: 1. Request (the patient decides autonomously to ask for help); 2. Autonomy (the patient is aware of his health status); 3. Content (the reasons why a request for help is advanced); 4. Relations (the patient is able to communicate with the others); 5. Context (the patient is aware of the context where he is acting).

The patients are 48 Italian adult females, mean age 50.29; their school levels are low (65%), medium (30%) and high (5%) . All patients are evaluated by a team of experts (psychiatrists and psychologists) at two successive occasions (time 1: the medical team visits the patient at his/her arrival at the medical center; time 2: the patient is revisited after a period of time which can vary from 20 days to 88 days). At each time-point, the experts rate each patient on the five indexes using a self-awareness rating scale.

There are three facets in the model: 1. patient (48), 2. time-point (2) and 3. index (5). The analysis produced patient measures, index calibration measures on a hypothesized PPSA behavior variable, and time-point measures. The infit statistics and the outfit statistics are satisfactory for time-points, also for the index measures, except for index 1 (request) for which the mean-square fit statistics are slightly above the upper criterion of 1.30 (RMT 8:3, 370 - www.rasch.org/rmt/rmt83b.htm). The majority of the patient measures fit statistics are also satisfactory.

Figure 1 shows the category probability curves for the self-awareness rating scale (0 = not present, 1 = very slightly present, 2 = slightly present, 3 = quite present, 4 = totally present) according to the Andrich rating-scale model. These curves indicate that the experts were able to discriminate the category hierarchy. Figure 2 shows the category relationships, but depicted as the probabilities of the higher ratings in each pair of adjacent categories of the rating scale. These have the form of the familiar Rasch dichotomous logistic ogives. The pairwise ogives have probability 0.5 at the Rasch-Andrich thresholds, where the adjacent categories are equally probable.

The Table shows the five index measures, the mean raw ratings received by the patients on the Likert scale, the corresponding patient measures and the time measures. Each cell contains the probability of presenting an index which is rated 3 by the experts, relative to a rating of 2, given the index's calibration on the PPSA variable, the overall measure for the patient and the relevant time-point measure.

Table 1, based on Figure 2, is a useful tool for psychiatric assessment of PPSA behavior. Suppose that at time 1 (0.24 logits), a patient with an overall self-awareness mean rating of 1.7 (patient measure = -.33), is rated on index 1 (-0.88 logits) in category 3 ("quite present") . Then the combined measure is -.33 - (0.24 + -0.88) = 0.31. This corresponds to a pairwise probability of 0.33 (arrows in plot, and bold cells in Table). This rating of the index has to be considered quite usual because its relative probability of occurrence on the PPSA variable is rather high (p = .33). But the same cannot be said when a patient rated 3 on index 4 (i.e. the patient is able to communicate with the others) because this has a low probability (p = .08) at a mean score of 1.7 (-1.4 logits in Figure 2).

At time-point 2, the probability of a higher relative rating is always higher than at time 1 in accordance with the difference between the time-point measures, 0.48 logits.

The combination of Rasch analysis and expert clinical knowledge allows us to predict clinical diagnosis of PPSA behavior. Further the inclusion of a time-point facet enables us to investigate and diagnose patient behavior longitudinally, which is helpful in patient treatment and predicting the usage of clinical resources.

Stefania Mannarini

University of Padova - Dept of General Psychology

Renato Lalli

Casa di Cura Parco dei Tigli-Teolo (Pd)

Markova, I.S. & Berrios G.E. (1995). Insight in clinical psychiatry. A new model. The Journal of Nervous and Mental Disease, 183, 12, 743-751.

Rangell, L. (1981). From Insight to Change. Journal of American Psychoanalytic Association, 29, 119-141.




Assessing Psychiatric Patient Self-Awareness Behavior with Many-Facet Rasch Analysis … S. Mannarini & R. Lalli, Rasch Measurement Transactions, 2008, 21:4 p. 1140-1



Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Aug. 5 - Aug. 6, 2024, Fri.-Fri. 2024 Inaugural Conference of the Society for the Study of Measurement (Berkeley, CA), Call for Proposals
Aug. 9 - Sept. 6, 2024, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt214f.htm

Website: www.rasch.org/rmt/contents.htm