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Data Variance Explained by Rasch Measures

Fig. 1.Variance decomposition of a dichotomy. 

The Rasch model predicts that each observation will 

contain an exactly predictable part generated by the Rasch 

measures, and a well-behaved random component whose 

variance is also predicted by the model. 

Figure 1 shows that, for dichotomous observations, as the 

logit measure difference between the person and the item 

increases (x-axis), the variance explained by the measures  

also increases (solid line) and the unexplained variance 

decreases (dotted line). When an item is as difficult as a 

person is able (0 on the x-axis), the outcome is completely 

uncertain. It is like tossing a coin. None of the variance in 

the observation is explained by the Rasch measures. 

Fig. 2. Decomposition with standardized variance. 

In Figure 2, the unexplained variance has been 

standardized to be the same size for every dichotomous 

observation. Thus each observation is modeled to 

contribute one unit of statistical information. An effect is 

to down-weight the central high-unexplained-variance 

observations. Standardized variances are used in the 

computation of standardized residuals which form the 

basis of several indicators of fit to the Rasch model.  

In Figure 3,  the decomposition of the variance in the data 

is shown for different combinations of item and person 

variance and item-person targeting. The unexplained 

variance has been standardized across observations a in 

Fig. 2. It is seen that the sum of the person S.D. and item 

S.D. must exceed 2 logits in order that over 50% of the 

standardized variance in the data be explained by the 

Rasch measures.  

In the equivalent plot for raw variances, the y-axis values 

are about half of those plotted in Figure 3. Thus the sum 

of the person and item S.D.s must exceed 3 logits for over 

50% of the raw observational variance to be explained. 

John M. Linacre
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Toward Practical Significance of Rasch Scores in International Studies in Education: 

More than Statistical Significance and Effect Size

Both in social sciences and in education, the scales that 

are used can easily and accurately lead to statistical 

significance, calculation of effect size indices, or 

computation of the confidence interval . However, 

unfortunately, practical significance of these scores can 

scarcely be obtained. For example, what does it mean to a 

teacher to be two points happier with his job than another 

one on a Likert scale? Almost worse: What does it mean 

to a school to be compared to the average national results 

in mathematics? Just to say that there is a statistical 

significant difference between the school score and the 

national average scores is not very informative for the 

school. 

Statisticians proposed a compromise to these kinds of 

situations. For this purpose, they suggest using effect size 

indices and confidence intervals in replacement of 

significance tests. They are interesting devices, though not 

as much when it comes to the practical significance of 

scores and to the difference between these scores.  

In the context of comparisons made with the results of 

international and national surveys in education, like the 

TEIMS, PIRLS and PISA, practical significance of these 

scores would lead researchers to more useful 

interpretations. It would lead to more meaningful 

comparisons of countries and states. Important decisions 

would be easier to make. 

In the context of these international surveys, researchers 

tried to find a way to lead to practical significance of the 

obtained mathematics, science, or reading literacy scores. 

For example, Cartwright, Lalancette, Mussio, and Xing 

(2003) related these international scores to results at a 

smaller provincial scale in Canada. They found that the 

provincial results in reading of British Columbia can be 

related with a good precision to the international PISA 

reading comprehension literacy score. While these 

findings don’t permit a direct practical interpretation, they 

tell us, at least, that it is possible to link results obtained at 

one survey, the PISA, to those obtained at another one, 

the British-Columbia. 

More interesting, and more practical, is Willms’ 

proposition (2004a, 2004b). Willms tries to translate the 

international Rasch scores results from PISA into a metric 

of school years and school days. This is an attractive idea, 

because it leads directly to a metric that allows 

administrative decision and teaching effect interpretation. 

Thus, it would be legitimate to say that to reach an 

An Introduction to Rasch Measurement: 

Theory and Applications 

October 14-15, 2006 

University of Illinois - Chicago, Chicago, IL 

Workshop Description 

This training session will provide participants with the 

necessary tools to become effective consumers of research 

employing Rasch measurement and the skills necessary to 

solve practical measurement problems. Instructional 

material will be based on four Rasch measurement 

models: dichotomous, rating scale, partial credit, and 

many-facet data. Participants will have the opportunity to 

use current Rasch software.  

The format will consist of eight self-contained units. The 

units are: Introduction to Rasch Measurement; Item and 

Person Calibration; Dichotomous and Polytomous Data; 

Performance and Judged Data; Applications of Rasch 

Measurement I and II; Examples of Rasch Analyses; and 

Analysis of Participants Data.  

Registration includes the full 2-day workshop, a 

continental breakfast each morning, over 550 pages of 

handouts and tutorial material, a copy of Introduction to 

Rasch Measurement (a 698 page book) and a one-year 

subscription to the Journal of Applied Measurement.  

Directors: Everett V. Smith Jr. and Richard M. Smith 

Visit www.jampress.org under Rasch Measurement 

Workshops for more details and registration materials. 

Figure 1. Relation between Rasch and TEIMS 2003 scores, schooling days and  number of books at home. 

http://www.jampress.org
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augmentation of one point on one of PISA literacy scales, 

a fixed number of schooling days would be necessary. 

Willms, in preliminary works, finds out that a difference 

of one point on the PISA scale is equivalent to about 5 

schooling days. He didn’t report on which literacy scale 

the equivalence was computed. He did this estimation by 

considering the fact that, because of the annual inscription 

date in each state and country, the 15-years-old students 

participating in the survey can be on two different school 

levels. This fact permits him to compute the effect of one 

schooling year on the PISA scores. The average schooling 

year in the 12 countries, where he was able to obtain the 

information about the level and the date of inscription, 

was equal to 172 days. Wherefore he observed that a 

schooling year correspond to a difference score of 34.30, 

he extrapolates that a one point difference is equivalent to 

about 5 schooling days (172/34.30). 

By themselves, Willms’ findings are of interest, being 

now able to give a clear interpretation of differences in 

literacy scores. However, if we also consider Cartwright 

et al., we can think that the equivalence formula obtained 

by Willms can be related to the one of other international 

and national educational surveys. Consider that the PISA 

scores are on a scale with a mean of 500 and a standard 

deviation of 100 and that, for example, the TEIMS Rasch 

scale has a mean of 150 and a standard deviation of 10. 

Thus, only using the standard deviation ratio, a one point 

difference at the TEIMS scale would be equivalent to a 10 

points difference at the PISA scale: σPISA / σTIMSS = 

100/10. An illustration of the relation between TIMSS 

2003 scores, schooling days, and number of books at 

home is presented in Figure 1. It can be seen that a mean 

difference of 32 books at home (37 - 5) corresponds 

approximately to one school year (178.50 days). 

A note of caution is to be considered. More research work 

is still to be done on this topic and it will have to consider 

the specific literacy scale, how old the students are, as 

well as their school level. More important, however, we 

think that the equivalence between the schooling days and 

the difference in the literacy scores would have to be 

computed independently for each country, not by an 

average on the 12 countries used by Willms which are so 

different in schooling practice.  

Gilles Raîche, Université du Québec à Montréal 

Claire IsaBelle, Université d’Ottawa 

Martin Riopel, Université du Québec à Montréal 

Cartwright, F., Lalancette, D., Mussio, J. and Xing, D. 

(2003). Linking provincial student assessments with 

national and international assessments. Report no 81-

595-MIE2003005. Ottawa, Canada: Statistics Canada. 

Willms, J. D. (2004a). Reading achievement in Canada 

and the United States : Findings from the OECD 

programme for international student assessment. Final 

Report no SP-601-05-04E. Ottawa, Canada: Human 

Resources and Skills Development Canada. 

 auxweb.unb.ca/applications/crisp/pdf/0404i.pdf 

Willms, J. D. (2004b). Variation in literacy skills among 

Canadian provinces: Findings from the OECD PISA. 

Report no 81-595-MIE2004012. Ottawa, Canada: 

Statistics Canada. 

ACSPRI Social Science Methodology 

Conference 

The University of Sydney, Sydney, Australia 

December 10-13, 2006 

Call for Papers and Participation 

The Australian Consortium for Social and Political 

Research, Inc. (ACSPRI) Conference  focuses on current 

issues in social science methodology. Plenary 

presentations will be given by: 

  Prof. Merrill Shanks, Univ. of California, Berkeley. 

  Prof. Michael Greenacre, Univ. Pompeu Fabra, 

 Barcelona, Spain. 

The Conference will accept papers based on an abstract of 

500 words. It is expected that, if accepted for the 

conference, presenters will submit a draft of a full paper 

before Dec 1, 2006, for inclusion in the conference 

proceedings. Papers can be peer-reviewed and this will be 

indicated in the Conference Proceedings. The Conference 

Website contains details of the submission procedure. 

Oct 2, 2006 : Final deadline for proposals 

Nov 1, 2006 : ‘early bird’ enrolments close 

December 10-13, 2006: (Sunday afternoon through 

Wednesday morning): Conference 

For information and conference updates visit 

www.conference2006.acspri.org.au 

Rasch-related Coming Events 

Sept 2006 - Dec 2007 3-day Rasch courses, Leeds, UK 

home.btconnect.com/Psylab_at_Leeds/  

Oct. 14-15, 2006, Sat.-Sun. Introduction to Rasch 

Measurement: Theory and Applications, Chicago IL 

(Smith & Smith) www.jampress.org  

Oct. 20-Nov. 17, 2006, Fri.-Fri. Practical Rasch 

Measurement (Winsteps) on-line course (Linacre) 

www.statistics.com/courses/rasch  

Nov. 1, 2006, Wed. Using Rasch to Measure Services and 

Outcomes (Conrad & Bezruczko) 

www.eval.org/eval2006/aea06.PDW.htm  

Dec. 11-13, 2006, Mon.-Wed. Objective Measurement in 

the Social Sciences - ACSPRI Conference, Australia 

www.acspri.org  

April 9-13, 2007, Mon.-Fri. AERA Annual Meeting 

Chicago, Illinois, www.aera.net 

http://www.conference2006.acspri.org.au
http://www.jampress.org
http://www.statistics.com/courses/rasch
http://www.eval.org/eval2006/aea06.PDW.htm
http://www.acspri.org
http://www.aera.net
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Unidimensionality Matters! (A Tale of Two Smiths?)
Introduction 

The Rasch measurement model is a unidimensional 

measurement model and this attribute has been the subject 

of much discussion in the Transactions (Stahl J 1991; 

Wright BD 1994; Linacre JM 1994; Fisher WP 2005). In 

an early article Wright and Linacre tell us that ‘whether a 

particular set of data can be used to initiate or to continue 

a unidimensional measuring system is an empirical 

question (Wright BD, Linacre JM 1989). The only way it 

can be addressed, they argue, is to 1) analyze the relevant 

data according to a unidimensional measurement model, 

2) find out how well and in what parts these data do 

conform to our intentions to measure and, 3) study 

carefully those parts of the data which do not conform, 

and hence cannot be used for measuring, to see if we can 

learn from them how to improve our observations and so 

better achieve our intentions’. (MESSA Memo 44, 

reprinted from Wright BD, Linacre JM 1989). Smith uses 

simulation to investigate which technique is better at 

discovering dimensionality (Smith RM, 1996). A review 

of these findings in RMT (9:4, 1996) argues that the 

conclusions are simple. ‘When the data are dominated 

equally by uncorrelated factors, use factor analysis. When 

they are dominated by highly correlated factors, use 

Rasch. If one factor dominates, use Rasch’.  

In Rasch analysis the understanding and detection of 

unidimensionality in the context of medical and 

psychological studies has developed and changed much in 

the past 15 years. Early published articles subscribed to 

the notion that fit to the model 

supported the unidimensionality of the 

scale and little else was done to confirm 

that assumption (Tennant A, et. al 

1996). In the 1990’s Wright had put 

forward a Unidimensionality Index 

(Wright BD, 1994), and gradually 

greater emphasis was placed on analysis 

of the residuals and particularly a 

Principal Component Analysis (PCA) 

of the residuals to detect second factors 

after the ‘Rasch Factor’ was removed. 

Originally interpretation of this was 

difficult as the proportion of variance 

attributable to the first residual factor 

was reported, but the total variation in 

the data was unknown. Subsequently 

Winsteps (Linacre JM, 2006) has 

incorporated the total variation into its 

reporting, so the magnitude of the first 

residual factor against the Rasch factor 

can be determined. In 2002 Smith 

reported an independent t-test approach 

to testing for unidimensionality (Smith 

EV, 2002, JAM) which is being 

incorporated into the latest RUMM2020 

software (Andrich, D., Lyne A, 

Sheridan B., Luo G, 2003). Elsewhere, 

others have used classical factor analytical approaches to 

testing for unidimensionality prior to fitting data to the 

Rasch model (Bjorner JB, Kosinski M, Ware JE  Jr, 

2003). 

A review of the literature suggests that there are three 

main approaches to assessing dimensionality: 

a) prior testing using classical approaches, such as factor 

analysis;  

b) those which hold to the assumption of fit equals 

unidimensionality – a fit only approach; 

c) those which involve post-hoc testing, having 

undertaken the Rasch analysis and supposing fit to the 

Rasch model (e.g., PCA of the residuals).  

Thus it is possible to conceive of a broad selection of tests 

which may be undertaken for any given data set. For the 

everyday user of Rasch software working in the health 

and social sciences, how can they be sure that they are 

truly dealing with a unidimensional construct? How far do 

these various tests detect multidimensionality in the data?  

Methods 

The aim of this present study is to contrast commonly 

used techniques from each of the three main approaches 

identified above by applying them to a set of simulated 

datasets with known dimensionality characteristics. Each 

data set is based upon 20 polytomous items with 5 

response options (0-4) and 400 cases. Details of the 

Table 1. Details of Datasets 

Dataset Structure Contents 

1 Unidimensional  20 items. 

2 

Two orthogonal  

dimensions  

(r<.05) 

10 items in each dimension.  Items generated in 

difficulty order (1=easiest, 20=hardest) .  

Interlaced items with item 1 assigned to 

dimension1,  item2 assigned to dimension 2.… to 

ensure equal difficulty for each dimension 

3 

Two orthogonal  

dimensions  

(r<.05) 

10 items in each dimension.  Items generated in 

difficulty order (1=easiest, 20=hardest) . 

Dimensions stacked with easy items 1-10 in 

Dimension 1, and hardest items 11-20 in 

Dimension 2 

4 

Two orthogonal 

dimensions 

(r<.05) 

16 items in Dimension 1 and 4 items in 

Dimension 2 . (items 5,10,15,20). Items generated 

in difficulty order (1=easiest, 20=hardest)  

5 

Two correlated  

dimensions  

(r =.70) 

10 items in each dimension. Items generated in 

difficulty order (1=easiest, 20=hardest) . 

Interlaced items with item 1 assigned to 

dimension1,  item2 assigned to dimension 2…  to 

ensure equal difficulty for each dimension 

6 

Two correlated  

dimensions  

(r =.70) 

10 items in each dimension.  Items generated in 

difficulty order (1=easiest, 20=hardest) . 

Dimensions stacked with easy items 1-10 in 

Dimension 1,  and hardest items 11-20 in 

Dimension 2 
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datasets are outlined in Table 1. A series of analyses were 

conducted on each of the 6 data files to assess 

dimensionality (Table 2). SPSS Version 14.0 was used to 

conduct factor analysis, and both Winsteps and 

RUMM2020 were used to conduct Rasch analysis. The 

data were simulated using SIMMsDepend (Marais 

I,2006). 

We have chosen procedures from SPSS because it is 

widely available and easy to use. Principal components 

analysis (PCA) was used to extract the factors followed 

by oblique rotation of factors using Oblimin rotation 

(delta = 0). Kaiser’s criterion, which retains eigenvalues 

above 1, was used in Procedure 1.1 to guide the 

identification of relevant factors. In Procedure 1.2 Horn's 

parallel analysis (Horn JL, 1965), which has been 

identified as one of the most accurate approaches to 

estimating the number of components (Zwick & Velicer, 

1986), was used. The size of eigenvalues obtained from 

PCA are compared with those obtained from a randomly 

generated data set of the same size. Only factors with 

eigenvalues exceeding the values obtained from the 

corresponding random data set are retained for further 

investigation. Parallel analysis was conducted using the 

software developed by Watkins (2000). Analyses were 

also conducted using a non-linear Factor Analysis 

(HOMALS) available in SPSS. Using curve 

estimation and a quadratic function, the values 

exported from the HOMALS procedure can be 

tested to determine the number of dimensions in 

the data.  

For the Rasch procedures we set both Winsteps 

and RUMM2020 to have identical convergence 

criteria. As none of the data sets satisfied the 

assumptions of the rating scale model, we use 

the unrestricted (partial credit) polytomous 

model. A number of different fit statistics are 

reported. OUTFIT ZSTD in Winsteps and 

Residuals in RUMM are equivalent, with any 

variation reflecting the difference in the 

underlying estimation procedures. We use the 

value 2.5 and above for both ( ≈ 99% 

significance) to determine misfit to model 

expectation. Usually the two statistics provide 

similar magnitudes of fit to the model.  

INFIT and OUTFIT MNSQ (Winsteps) are also 

reported with acceptable ranges of 0.9-1.1 and 

0.7-1.3 respectively, following Smith’s 

recommendations for sample size adjustment 

(Smith RM et al, 1998). RUMM Chi-Square 

probabilities are also reported, Bonferroni 

adjusted to 0.0025 and unadjusted. We also 

report the RUMM Chi Square Interaction Fit 

Statistic which is a summary fit statistic and 

widely used to indicate overall fit to the model. 

We also report Wright’s Unidimensionality 

Index which is the person separation using 

model standard errors, divided by the person 

separation using real (misfit inflated) standard errors 

(Wright BD, 1994). A value above 0.9 is indicative of 

unidimensionality; 0.5 and below of multidimensionality 

and everything between is the usual grey area of 

uncertainty!  

We report the usual Principal Component Analysis (PCA) 

of the residuals, including the percentage of variance 

attributable to the Rasch factor and the first residual factor 

(usually identical in Winsteps and RUMM), and the 

percentage of variance attributable to the first residual 

factor out of total variance (Winsteps).  

Finally, we report on a comparison of person estimates 

based upon subsets of items. In practice where there is a 

conceptual basis for multidimensionality estimates are 

made from the a-priori dimensions. In the present case 

with this simulated data, we use the item loadings on the 

first factor of the PCA of the residuals. Person estimates 

derived from the highest positive set of items (correlated 

at 0.3 and above with the component) are contrasted 

against those derived from the highest negative set. A 

series of independent t-tests are undertaken to compare 

the estimates for each person and the percentage of tests 

outside the range ±1.96 is computed, which follows 

Everett Smith’s general approach (Smith EV, 2002).  A 

Table 2. Details of Procedures 

1.1 Default SPSS Principal Components Analysis using 

Kaiser’s criterion,  retaining eigenvalues above 1. 

1.2 Default SPSS Principal Components Analysis with Horn’s 

parallel analysis to determine significant eigenvalues. 

Prior 

testing 

1.3 HOMALS non linear factor analysis 

2.1 Percentage of items which misfit the (polytomous) model  

OUTFIT ZSTD (Winsteps). 

2.2 Percentage of items which misfit the (polytomous) model  

Residuals (RUMM). 

2.3 Percentage of items showing INFIT MNSQ misfit 

(Winsteps). 

2.4 Percentage of items showing OUTFIT MNSQ misfit 

(Winsteps). 

2.5 Percentage of items showing Chi-Square misfit (RUMM). 

2.6 Percentage of items showing Chi-Square misfit (RUMM),  

Bonferroni corrected 

2.7 Summary Fit statistics. 

2.8 Wright’s Unidimensionality Index. 

2.9  Person Separation Index  (RUMM) 

Fit to 

the 

Rasch 

model 

2.10  Person Separation (real) (Winsteps) 

3.1 Percentage of variance attributable to the Rasch factor 

3.2 Percentage of variance attributable to the first residual  

factor 

3.3 Ratio of variance attributable to first residual factor  

compared with Rasch factor (Winsteps) 

Post 

Hoc 

tests 
3.4 Percentage of individual t-tests outside the range ± 1.96 

(RUMM2030)  with Binomial Test for Proportion 

confidence intervals where appropriate. 

 



1050                        Rasch Measurement Transactions 20:1 Summer 2006 

Binomial Proportions Confidence Interval can be 

calculated for this percentage. The Binomial CI should 

overlap 5% for a non-significant test. The results of these 

analyses are reported in the Table 3.   

Results 

The default factor analysis (1.1) failed to identify the 

single dimension, instead, identifying two ‘difficulty’ 

dimensions. The HOMALS procedure failed to detect the 

situation (specified in Set 4) where only four items 

belonged to a second dimension, and consistently failed 

where the correlation between factors was ≈ 0.7. The 

Rasch model fit statistics performed poorly where 

dimensions were interlaced and where the correlation 

between factors was ≈ 0.7. Wright’s Unidimensionality 

Index appeared insensitive to multidimensionality. Little 

can be gleaned from the percentage of variance 

attributable to the Rasch factor, as this seems consistently 

high, irrespective of the underlying dimensionality. In Set 

1 the percentage of variance attributable to the first 

residual factor was substantially lower than in other sets, 

but the percentage of variance out of the total variance 

was low, except for the orthogonal data sets. The 

independent t-test approach consistently identified the 

unidimensional and multidimensional data sets.  

These results have a number of implications for everyday 

practice of Rasch analysis. In the construction of a new 

polytomous scale where the intention is to create a 

unidimensional construct, Rasch fit statistics may mislead 

if there are two dimensions where the items are interlaced 

in difficulty. Supporting Richard Smith’s (1996) 

recommendation, exploratory factor analysis should be 

undertaken at the outset to make sure that dimensionality 

is not going to be a problem, or to identify which items 

may be problematic so as to inform the iterative Rasch 

analysis procedure. As we cannot know in advance 

whether or not two interlaced dimensions may exist, this 

analysis should be undertaken as a matter of routine. The 

simplest way to undertake this is with the default factor 

analysis procedure using the parallel analysis to determine 

the number of significant eigenvalues.  

Although the PCA of the residuals may give clues to 

multidimensionality in the data, their interpretation is not 

straightforward. The percent of variance of the first 

residual factor (out of total variance in the residuals) does 

show a clear increasing trend from the unidimensional 

data, through the correlated factors to the orthogonal 

factors. However, at what point does this figure shift from 

a unidimensional indicator to a multidimensional 

indicator?  

The individual t-test approach proposed by Everett Smith 

seems the most robust in that it clearly identifies 

dimensionality. This test has importance not just for the 

interpretation of unidimensionality, but also the meaning 

of multidimensionality in the data. Note that the 

proportion of t-tests outside the range is high across Sets 

2-6, even when the factors are correlated at ≈ 0.7. In 

Table 3. Summary of Results of Analyses 

Test Dataset: 1 2 3 4 5 6 

 Prior Tests –  Number of Factors 

1.1 EFA with eigenvalue>1.  

  (% Variance 2
nd

 factor) 

2 

(6%) 

2 

(30%) 

2 

(31%) 

2 

(14%) 

2 

(63%) 

2 

(63%) 

1.2 EFA with parallel analysis 1 2 2 2 2 2 

1.3 HOMALS – number of factors 1 3 2 1 1 1 

 Rasch Fit 

2.1 % OUTFIT ZSTD out of range 0 0 0 100 5 0 

2.2 % Residuals outside range 0 0 0 85 0 0 

2.3 % INFIT MNSQ out of range 5 0 5 100 20 15 

2.4 % OUTFIT MNSQ out of range 0 0 0 60 0 0 

2.5 % Chi-Square significant 0 5 70 100 0 0 

2.6 % Chi-Square significant (Bonferroni adjusted) 0 0 35 70 0 0 

2.7 Item-Trait Interaction Fit statistic 0.74 0.09 0.00 0.00 0.97 0.12 

2.8 Wright’s Unidimensional Index 1.08 1.11 1.11 1.12 1.07 1.08 

2.9 Person Separation Index ≈ α  0.91 0.88 0.89 0.93 0.95 0.95 

2.10 (Real) Person Separation  3.12 2.44 2.56 3.59 4.04 4.09 

 Post Hoc tests 

3.1 % variance  attributable to the Rasch factor. 82.0 70.0 70.6 76.9 85.2 84.8 

3.2 % variance attributable to first residual factor 7.4 48.8 47.5 25.4 26.3 23.8 

3.3 % variance attributable to first residual  factor out of total 

variance 
1.4 14.3 14.1 6.4 3.8 3.7 

3.4 Percentage of individual t-tests outside range ± 1.96 (95% CI) 

where needed 

7.0 

(5-9%) 
55.0 51.5 45.3 38.8 35.0 
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practice this means that person estimates differ by 

between 1 to 2 logits, depending upon which set of items 

are being used for that estimate. This variability in person 

estimate is unsustainable when scales are to be used for 

individual clinical use, for example where cut points are 

often used to determine clinical pathology. The variability 

of person estimates where multidimensionality exists also 

raises fundamental questions about Computer Adaptive 

Testing approaches which rely upon estimates based upon 

just a few variables. Clearly, only the strictest form of 

unidimensionality must be used to avoid significantly 

different person estimates driven by multidimensionality. 

The analysis we have undertaken is only at the simplest 

level, reflecting what is most likely to be used in everyday 

research practice in the health and social sciences. We 

have, for example, not used Monte Carlo simulation or 

other methods to look at ranges of variance explained. 

Neither have we looked at different sample sizes or 

different test lengths. We have not addressed dichotomous 

items, which bring their own set of problems to factor 

analysis. Nevertheless, we believe that this simple 

analysis has shown that great care needs to be taken in 

confirming the assumption of unidimensionality of data 

when fitted to the Rasch model. Perhaps others may 

pursue some of the issues we have omitted.    

Conclusion 

When developing new polytomous scales, an exploratory 

factor analysis used a priori, with parallel analysis to 

indicate significant eigenvalues, should give early 

indications of any dimensionality issues prior to exporting 

data to Winsteps or RUMM. This should identify the 

situation of equal number of items on two factors which 

will not be detected by the Rasch analysis fit statistics and 

where the PCA of the residuals may be indeterminate.  

After fit of data to the Rasch model, careful examination 

of the PCA of the residuals should provide clues to any 

remaining multidimensionality. Comparison of person 

estimates derived from these subsets of items, using the 

independent t-test approach, should confirm or reject the 

unidimensionality of the scale.    

Alan Tennant PhD
1
, and Julie F.  Pallant PhD

2
.   

1
 Academic Unit of Musculoskeletal & Rehabilitation 

Medicine, Faculty of Medicine and Health, The 

University of Leeds, UK.  

2
 Faculty of Life and Social Sciences, Swinburne 

University of Technology, Hawthorn, Victoria 3122, 

Australia 
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Dichotomous Equivalents to Rating Scales 

There are numerous ways to conceptualize rating scales. 

One useful conceptualization is to imagine that the rating 

scale is equivalent to a set of dichotomous items. Huynh 

Huynh investigated this: Huynh H. (1994) On equivalence 

between a partial credit item and a set of independent 

Rasch binary items. Psychometrika, 59, 111-119, and 

Huynh H. (1996) Decomposition of a Rasch partial credit 

item into independent binary and indecomposable trinary 

items. Psychometrika, 61, 31-39. 

A crucial finding is that the Rasch-Andrich thresholds 

must advance (i.e., not exhibit “threshold disordering”) 

for a polytomy to have the mathematical properties of a 

set of dichotomies.  But merely advancing is not enough. 

Consider a polytomy with m+1 ordinally advancing 

categories. There are m transition points, so this could be 

conceptualized as m dichotomies. As the Rasch-Andrich 

thresholds for the polytomy become further apart then the 

set of dichotomous items would have a wider difficulty 

range. The boundary condition is that the m dichotomies 

be of equal difficulty. Then a score of  k on the 

polytomous item would be equivalent to scoring k on m 

equally-difficulty dichotomies. 

A set of equally difficulty dichotomies constitute a set of 

Bernoulli (binomial) trials. The polytomous Rasch model 

for this is (with the familiar notation): 

This provides the lower limits by which Rasch-Andrich 

thresholds must advance in order that a polytomy have the 

same mathematical properties as a set of dichotomies.  A 

useful rule-of-thumb is “thresholds must advance by one-

logit”. The exact values are tabulated below. 

John Michael Linacre 

Minimum Rasch-Andrich threshold advances for a 

polytomy to be equivalent to a set of dichotomies 

Thresholds: 
------ 

Categories: 

1 

to 

 2 

2 

to 

 3 

3 

to 

4 

4 

to 

5 

5 

to 

6 

6 

to 

7 

7 

to 

8 

8 

to 

9 

9 

to 

10 

3 1.39                 

4 1.10 1.10               

5 .98 .81 .98             

6 .92 .69 .69 .92           

7 .88 .63 .58 .63 .88         

8 .85 .59 .51 .51 .59 .85       

9 .83 .56 .47 .45 .47 .56 .83     

10 .81 .54 .44 .41 .41 .44 .54 .81   

11 .80 .52 .42 .38 .36 .38 .42 .52 .80 

Rating Scale Equivalence to Dichotomies 

Question: We  have 5 dichotomous items based on the 

same reading text. What would happen if we replace the 

dichotomies with a rating scale item scored 0-5? 

Reply: This is an attractive option if the target 

dichotomies exhibit more local dependence than the other 

items on the test. Let us first suppose that the 5 items fit 

the Rasch model about as well as the other items on the 

test. Then  here is a standard polytomous rating scale 

model: 
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and similarly for Di4, Di5 .  The overall difficulty of a 

polytomous item is given by  

giving Fik =  Di – Dik as the Rasch-Andrich thresholds. 

In general, the overall difficulty of the polytomous item 

will not match the average difficulty of the equivalent 

dichotomous items. If the local origin of the measurement 

scale is set at the average difficulty of the items, it is seen 

that the local origin will also change location, so that the 

person measures will change value. But all person 

measures will change by about the same amount. 

Example: Dichotomous item difficulties are {1,2,3,4,5} 

logits. Then the Dix are {.55, 1.87, 3.0, 4.13, 5.45} logits. 

So what will happen if your 5 items are more locally 

dependent than the other items on the test? If the local 

dependence increases their fit to the Rasch model, then 

they will be more discriminating than 5 independent 

Rasch dichotomous items. Consequently the {Dik} will be 

less dispersed than the values given above.  

But if the local dependence is on a secondary dimension, 

so that it decreases their fit to the Rasch model, then the 

{Dik} will be more dispersed than the values given above. 

John Michael Linacre

( )

))1/((loglog
1

+−−−=













−

xmxDB
P

P
in

xni

nix 21

5

1

5

1

5

1

3 log ii

k kj jh

DDD

i DDeD hjk −−









−= ∑ ∑ ∑

= += +=

−−−



Rasch Measurement Transactions 20:1 Summer 2006  1053 

Meaningfulness, Sufficiency, Invariance and Conjoint Additivity
Consider the following statements from widely respected 

authorities in statistics and measurement: 

“If there exists a minimal sufficient statistic [i.e., one that 

is both necessary and sufficient] for the individual 

parameter Theta which is independent of the item 

parameters, then the raw score is the minimal 

sufficient statistic and the model is the Rasch model” 

(Andersen, 1977, p. 72). 

“The set of invariant rules based on a sufficient statistic is 

an essentially complete subclass of the class of 

invariant rules” (Arnold 1985, p. 275; citing Hall, 

Wijsman, & Ghosh, 1965). 

“The hallmark of a meaningless proposition is that its 

truth-value depends on what scale or coordinate 

system is employed, whereas meaningful 

propositions have truth-value independent of the 

choice of representation, within certain limits. The 

formal analysis of this distinction leads, in all three 

areas [measurement theory, geometry, and relativity], 

to a rather involved technical apparatus focusing 

upon invariance under changes of scale or changes of 

coordinate system” (Mundy, 1986, p. 392). 

Andersen (1977) shows that summing ratings to a score is 

meaningful and useful only if that score is a minimally 

sufficient statistic, and if that statistic exists, then the 

Rasch model holds. Arnold (1985) and Hall, Wijsman, 

and Ghosh (1965) show that statistical sufficiency is 

effectively equivalent with measurement invariance. 

Mundy (1986) shows that meaningful propositions all 

share the property of invariance. Luce and Tukey (1964) 

show that conjoint additivity is another way of arriving at 

the invariance characteristic of fundamental measurement. 

These principles of meaningfulness, sufficiency, 

invariance, and conjoint additivity are ubiquitous in the 

production of scientific knowledge, which explains why 

we find so many strong statements in the history of 

science to the effect that measurement and quantification 

are absolutely essential to any science worthy of the name 

(Michell, 1990, pp. 6-8). We have, unfortunately, 

confused the mere use of number with meaningful 

measurement, when, in fact, it is the realization of the 

qualitatively mathematical ideal of invariance that makes 

science what it is. Even as unlikely a philosopher as 

Heidegger (1967, pp. 75-6), who was held by some to be, 

at best, a poet, understood that the broad qualitative sense 

of the mathematical is “the fundamental presupposition of 

all ‘academic’ work” and “of the knowledge of things.”  

Multiple harmonious definitions of meaningful 

measurement are effectively embodied in Rasch models 

(Fischer, 1995; Fisher, 2004; Wright, 1997). It then 

follows that the Rasch model’s “singular significance for 

measurement is that it is a unique (necessary and 

sufficient) deduction from the (fundamental) 

measurement requirements of joint order and additivity” 

(Wright, 1984).  

Analytic methods implementing Rasch measurement test 

the hypothesis of qualitative yet mathematical 

meaningfulness more effectively, easily and efficiently 

than any other available methods. It is the norm today to 

presume scientific status and the achievement of 

measurement even when sufficiency and invariance have 

not been tested or established. The day may soon be 

coming when such hubris will be considered tantamount 

to fraud. When that day arrives, research employing 

Rasch models will be sought after as paradigmatic 

examples of mathematically meaningful methodology. 

William P. Fisher 
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Item Discrimination and 

Rasch-Andrich Thresholds 

Rasch dichotomous items are modeled to have the same 

(or known) discrimination. The inter-adjacent-category 

discrimination of polytomous Rasch items is also modeled 

to be the same (or known), but the overall discrimination 

of polytomous items depends on the distance between its 

Rasch-Andrich thresholds and so can vary across items 

and instruments.. 

Consider a five category rating scale, modeled by a set of 

4 equally spaced Rasch-Andrich thresholds. Then the 

overall item discrimination can vary from very steep to 

almost flat depending on the distance between the 

threshold values. 

The plot shows the relationship between uniform 

threshold spacing, x, and the item-discrimination slope, a, 

of an equivalent logistic ogive with the range y = 0-4 

score points given by 

 

 

A discrimination of a >= 1.0 implies that the polytomy is 

equivalent to summing 4 independent dichotomous 0-1 

items. When  a = 1.0  the items are of equal difficulty. 

When the inter-threshold distance is negative, the Rasch-

Andrich threshold are “disordered”. 

It can be seen that one advantage of using Rasch 

polytomies over independent dichotomous items is that a 

polytomy can provide higher item discrimination while 

maintaining the desirable measurement properties of a 

Rasch model. This is useful for items targeting pass-fail 

decisions and computer-adaptive testing. This is also one 

situation in which disordered thresholds can be 

advantageous. 

John Michael Linacre 

Making Metrics Less Arbitrary 
“A metric, once made meaningful, can be used to provide 

perspectives about such things as the magnitude of change 

that occurs on an underlying dimension as a function of 

an intervention. Evidence that an intervention causes 

movement along a scale that has nonarbitrary meaning 

can reveal the real-world consequences of this change.” 

“It can be difficult and time consuming to conduct the 

research needed to make a metric less arbitrary. 

Fortunately, the issue of metric arbitrariness is irrelevant 

for many research goals, so not all researchers must tackle 

this issue. ... However, there are applied situations in 

which researchers need to address the issue if they are 

going to fulfill their research goals. Tying metrics to 

meaningful, real-word events provides a viable means of 

making metrics less arbitrary, but there will always be 

some guesswork involved. No new methodology is going 

to expose psychological constructs to the naked eye. Best 

estimates of where people stand on psychological 

dimensions are always that, estimates. Nevertheless, 

awareness of this limitation is of value to the 

psychologist. A researcher who appreciates the gap 

between a psychological metric and a psychological 

reality knows to look past a person's score and search for 

something meaningful.”  

Blanton, H., and J. Jaccard. 2006. Arbitrary metrics in 

psychology. American Psychologist 61(January):27-41.  
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