Fit to Models: Rasch Model vs. Correlation Model

Viewed as a statistical device, the Rasch model is one of thousands in current use. One of those thousands most frequently employed is the Pearson Correlation Model.

The Correlation Model

The size of the Pearson product-moment correlation between two variables is frequently reported, sometimes accompanied by whether it is significantly different from 0.00. But rarely reported are:

1) whether the observed correlation departs insignificantly from 1.00, which is perfect correlation. But high correlations, regardless of their statistical significance, could be indicative of collinearity. Near-perfect correlation should be regarded with suspicion.

2) whether the observations violate the assumptions underlying the Correlation Model. Violations are rarely tested explicitly because the correlation model is too useful not to use. Pearson correlations are often reported for data which are known not to meet its assumptions.

The Rasch Model

The Rasch model is similarly too useful not to use. Further, near perfect fit to the Rasch Model should be regarded with suspicion. Empirical processes are uneven. The validity of scientific work has come into question when statistical findings appear to be too perfect.

Taking the same position with regards to the Rasch Model as we do for the Correlation Model, the crucial question is not "Is the correlation statistically 1.0", expressed as "Do the data fit the Rasch model statistically perfectly?" This question has been the focal point of most global fit analysis with the Rasch model. Instead the crucial question becomes "Is the correlation statistically different from 0.00", expressed as "Is there a Rasch dimension which is significantly larger than a point?"

The Rasch dimension reduces to the size of a point when the data are perfectly random. Jacob Cohen (1992) suggests that, for the ratio of explained variance to unexplained variance, 2% is a small effect size, 15% is a medium effect size, and 35% is a large effect size. Recast this as the percentage of total variance explained and 2% is a small effect size, 13% is a medium effect size, and 26% is a large effect size. For comparison, the variance explained by the Rasch measures for the Liking for Science data is 51% [revised, 2008] and for the Knox Cube Test data is 71% [revised, 2008]. Even the variance explained for a relatively central, poorly fitting, NSF survey data set is 30% [revised, 2008]. Rasch papers can routinely report effect statistics, which, if they were the findings of correlation studies, would produce great joy among social scientists.

John M. Linacre

Cohen J. (1992) A Power Primer, Psychological Bulletin, 112, 155-159.


Fit to Models: Rasch Model vs. Correlation Model. Linacre J.M. … Rasch Measurement Transactions, 2005, 19:3 p. 1029



Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt193d.htm

Website: www.rasch.org/rmt/contents.htm