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Virtual Equating
When two test forms have no respondents in common and 
no items in common, then the data for each test form 
comprises a separate analysis. If the test forms are 
designed to be parallel, then it may be reasonable to assert 
that the mean item difficulties of the two test forms are 
the same. If the distributions of the respondents 
administered each test forms are considered to be 
randomly equivalent, then it may be reasonable to assert 
that the mean respondent abilities are the same. But what 
if these assertions are unreasonable or need to be verified? 
Then conduct a qualitatively-based virtual equating 
(Luppescu, 1996). 
 
Step 1. Identify pairs of items of similar content and 
difficulty in the two tests. Be generous about interpreting 
“similar” at this stage.  
 
Steps 2-4 by print-out: The two item difficulty hierarchies  
are printed with the difficulties spaced according to their 
Rasch measures. Equivalent items are identified. The 
sheets of paper are moved relative to each other until the 

overall joint hierarchy makes the most sense. The value 
on Test A corresponding to the zero on Test B is the 
equating constant to use for Test B. If the item spacing on 
one test appears expanded or compressed relative to the 
other test, then rescale the measures on one test form to 
compensate.  
 
Or: Step 2 by graphing: From the separate analyses, 
crossplot the difficulties of the pairs of items, with Test B 
on the y-axis and Test A on the x-axis. The slope of the 
best-fit line i.e., the line though the point at the means of 
the common items and through the (mean ± 1 S.D.) point 
should have slope near 1.0. If it does, then the intercept of 
the line with the x-axis is the equating constant.  
 
To place Test B in the Test A frame of reference: add the 
x-axis intercept to all Test B measures. 
 
Step 3. Examine the scatterplot. Points far away from the 
best fit line indicate items that are not good pairs. You 
may wish to consider these to be no longer paired. Drop 
the items from the plot and redraw the best fit line.  
 
Step 4. The slope of the best fit is: slope = (S.D. of Test B 
common items) / (S.D. of Test A common items) . So 
multiply Test B measures by the value of 1/slope, and add  
the value of the x-intercept. Then reanalyze Test B. Test 
B is now in the Test A frame of reference, so a cross plot 
of the equating items should approximate the identity 
lined. If so, the person and item measures from Test A 
and Test B can be reported together. 
 
Luppescu, Stuart (1996). Virtual equating: An approach to 

reading test equating by concept matching of items. 
Doctoral dissertation, University of Chicago. 
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Rasch Online Course 

“Practical Rasch Measurement” 

Feb. 3 -  March 3, 2006 

www.statistics.com/content/courses/rasch    

Aim of the Course: This course covers the practical 
aspects of data setup, analysis, output interpretation, fit 
analysis, differential item functioning, dimensionality and 
reporting. Simple test linking and equating designs are 
addressed. Supporting theory is presented conceptually. 
Participants are encouraged to analyze their own datasets 
in parallel to the course datasets. 

Instructor: John “Mike” Linacre 

SESSION 1: Basic concepts and operations  

• Ministep software installation and operation  

• Data entry methods  

• Scoring data to accord with the latent variable  

• Linear measures vs. raw scores  

• Simple dichotomous and polytomous analyses  

• Item and person maps  

SESSION 2: Fit analysis and item structures  

• Observations, expectations and residuals  

• Quality-control fit statistics for items and persons  

• Reliability indexes  

• Distracter analysis  

• Modeling multi-category items  

SESSION 3: Estimation, DIF and dimensionality  

• Estimation methods  

• How iterative estimation works  

• Differential item functioning (DIF)  

• Investigating dimensionality  

SESSION 4: Test equating, reporting findings.  

• Equating, linking and anchoring  

• Equating dichotomous and polytomous items  

• Analyzing your own data  

• Learning from published Rasch-based research  

• Reporting Rasch-based findings  

Organization of the Course: The course takes place over 
the Internet at statistics.com. During each course week, 
you participate at times of your own choosing - there are 
no set times when you must be online. Course participants 
will be given access to a private bulletin board that serves 
as a forum for discussion of ideas, problem solving, and 
interaction with the instructor. The course is scheduled to 
take place over four weeks, and should require about 10 
hours per week. At the beginning of each week, 
participants receive the relevant material, in addition to 
answers to exercises from the previous session. During 
the week, participants are expected to go over the course 
materials and work through exercises. Discussion among 
participants is encouraged. The instructor will provide 
answers and comments.  

Course cost: $399 per participant ($299 academic). 

 

Hong Kong 

HKSoQOL Conference on 

Quality of Life Research in Asia 

19-21 May, 2006 (Fri.-Sun.) 

 More than 15 local and overseas experts present plenary 
and symposium sessions and also in-depth workshops. 

www.hksoqol.org/conference 

PROMS 

Pacific Rim Objective Measurement 

Symposium  

June 27-29, 2006 (Tues.-Thur.) 
Rasch measurement as a tool for scientific progress 

www.promshk.org 

Rasch Workshops 
January 5-6, 2006, Thursday - Friday, Chicago IL  

Introduction to Facets 
conducted by Carol Myford and Lidia Dobria 

www.winsteps.com/facwork.htm  
 

January 16-20, 2006, Monday - Friday, 

 Canberra, Australia 

Measurement in the Psychosocial Sciences:  

from Raw Scores to Rasch Measures 
conducted by Andrew Stephanou 

 www.acspri.org.au  
 

February 25, 2006, Saturday, Taiwan  

Rasch Analysis Workshop -  

Introduction Course on Health care 
conducted by Wen-Chung Wang 

www.healthup.org.tw/rasch/950225.htm  
 

March 20-21, 2006, Monday - Tuesday, Chicago  

Introduction to Winsteps 
conducted by Ken Conrad and Nick Bezruczko 

www.winsteps.com/workshop.htm  
 

April 6-7, 2006, Thursday-Friday, San Francisco CA 

(pre-AERA) 

Introduction to Rasch Measurement 
conducted by Richard Smith and Everett Smith 

www.jampress.org  
  

June 25, 2006, Sunday, Hong Kong (pre-PROMS) 

Introduction to Winsteps 

June 26, 2006, Monday, Hong Kong (pre-PROMS) 

Introduction to Facets 
conducted by Mike Linacre 

 www.promshk.org  

http://www.statistics.com/content/courses/rasch
http://www.hksoqol.org/conference
http://www.promshk.org
http://www.winsteps.com/facwork.htm
http://www.acspri.org.au
http://www.healthup.org.tw/rasch/950225.htm
http://www.winsteps.com/workshop.htm
http://www.jampress.org
http://www.promshk.org
http://www.statistics.com/content/courses/rasch
http://www.hksoqol.org/conference
http://www.promshk.org
http://www.winsteps.com/facwork.htm
http://www.acspri.org.au
http://www.healthup.org.tw/rasch/950225.htm
http://www.winsteps.com/workshop.htm
http://www.jampress.org
http://www.promshk.org
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Book Review: Constructing Measures:  An Item Response Modeling Approach
The expert Rasch modelers have truly begun the 
necessary effort to explain and teach the basics to front-
line professionals.  Mark Wilson (2005, Lawrence 
Erlbaum Assoc.) has joined Bond & Fox (2002) to help 
fill the gap of useful introductory material to teach with, 
their predecessor, Best Test Design, was published in the 
1970’s! Constructing Measures is aimed at a first course 
in measurement, but makes every effort to be consistent 
with the Rasch model and still remain true (pun intended) 

to the history of measurement in the 20th century. 

By proposing a reasonable and understandable scheme of 
construct modeling using “building blocks”, the book is 
an excellent primer for a basic measurement course.  The 
introduction of construct maps in chapter 2 is subtle and 
leads easily to recognizable ruler output from Rasch 
software.  The item-design chapter mentions levels of 
specificity, but stops a little short on the discussion of 
mixed item types as part of a single instrument.  

Outcome space (chapter 4) moves from Likert items to 
phenomenography to the SOLO taxonomy to Guttman.  
To me, this would be ordered better (sorry, I can’t help it) 
by moving Guttman adjacent to Likert.  Chapters 5 and 6 
introduce the Rasch model with excellent explanations, 
appropriate historical references, and plenty of graphs.  In 
chapter 5, I kept expecting a mention of conjoint 
probabilities but that never appeared. 

The concept of logits as units also tiptoes in without much 
discussion.  Between all the other italicized concepts and 
definitions, this seems a little understated.  The basic 
equations and examples are solid.  Almost all the math is 
in the middle chapters, and most classes will have to slow 
down here even though the CD that accompanies the text 
is an excellent teaching tool. (continues next column) 

Everything Relates to Everything Else 

“Our current scientific understanding has moved 
considerably from the view that the universe, both on the 
cosmic scale and in the inner workings of matter, is 
understandable in terms of a sticks-and-balls mechanism, 
the behavior of which can be elucidated and predicted 
with greater and greater precision. Instead, we see a large, 
interactive process with a great deal of unpredictability 
built into the very nature of things. What is even more 
fascinating is that the observer, you and me and the 

scientist behind the measuring instruments, -- become a 

part of the process. The observer, in a curious way, 
becomes part of what the outcome of the observation is. 
Mind, in effect, can be seen as an additional reality of the 
universe, inseparable from its time-space dimensions. 
Rather than consisting of a lot of separate objects, the 
universe is comprehensible as a whole of complex events 
in which everything relates to everything else.” 

J. John Keggi, “Stillness and the Storm”, Augusta, Maine, 
22 June 1997 

Chapter 6 compares the Rasch model to the 2PL-IRT 
model and provides a very good rational for model 
choice.  The discussion of fit is adequate and introduction 
of Kidmaps is a plus.  Explaining Keyforms to novices 
has often been the downfall of otherwise excellent 
presentations for me.  Chapter 6 misses an opportunity to 
mention MFRM as a model, and the book again 
emphasizes classical reliability coefficients in chapter 7 
without discussing Facets for rater effect estimates.  
Given the previous coverage of discrimination functions 
and fit, Facets would be no more difficult to comprehend. 

The text’s return to Construct Maps in chapter 8 on 
validity is appropriate.  The traditional reliability 
treatment contrasts with the lack of mention of “criterion-
related validity” which students are likely to see in other 
places and so wonder where it is.   The introduction of 
DIF is good.  Chapter 9 ends the book with some 
philosophy (situative), some psychology (cognitive), and 
some statistics (hierarchical).  This chapter has some 
applied examples that would interest students if the 
“adding complexity” section doesn’t ambush them first. 

Packaged with a useful CD, this book would be good for 
students who had a prior research or basic statistics class, 
and needed a step-by-step approach to creating a test.  
Overall, Mark Wilson has obviously worked hard to 
create understandable examples and a practical process 
for students to build a test from start to finish.  The book 
accomplishes exactly that with a logical process and basic 
explanations.  As the preface suggests, the text is aimed at 
active learning by doing, and it would be a shame to use it 
otherwise. 

Steve Lang 
University of South Florida, St. Petersburg 

Numerical Nonsense 

“In developing procedures, mathematical statisticians 
have assumed that techniques involving numerical scores 
[etc.] ... are to be applied where these numbers ... are 
appropriate and meaningful within the experimenter’s 
problem. If the statistical method involves the procedures 
of arithmetic used on numerical scores, then the numerical 
answer is formally correct. Even if the numbers are the 
purest nonsense, having no relation to real magnitudes or 
the properties of real things, the answers are still right as 
numbers. The difficulty comes with the interpretation of 

those numbers back into statements about the real world. 

If nonsense is put into the mathematical system, nonsense 
is sure to come out.” 

Hays, W. L. (1973). Statistics for the social sciences (2d 
ed.). New York: Holt, Rinehart and Winston. p. 88, 
as quoted on p. 18 of Shavelson, R. J. (1996). 
Statistical reasoning for the behavioral sciences (3d 
Ed.). Boston: Allyn and Bacon. Courtesy of William 

P. Fisher, Jr. 
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Correlation Coefficients: Describing Relationships
Correlation coefficients summarize the association 
between two variables. They include: 

(a) Both variables are expressed as perfectly precise, 
normally distributed, real numbers (PPNDRN): the 
Pearson product-moment correlation. 

(b) Both variables are PPNDRN, but one is grouped into 
two classes (high and low): the biserial correlation. 

(c) Both variables are PPNDRN, and both are grouped 
into two classes (high and low): the tetrachoric 
correlation, or into multiple ordered classes: the 
polychoric correlation. 

(d) One variables is PPNDRN, the other is a discrete 
variable with only two values (such as gender): the point-

biserial correlation, or more than two equally spaced 
values, the point-polyserial correlation. 

(e) Both variables are discrete with only two values: phi 
correlation.  

If the numbers to be correlated are not perfectly precise, 
then it may be possible to disattenuate the correlation 
coefficient for measurement error (RMT 10:1, 479). 

Pearson’s product-moment correlation is the most 
commonly reported, even for those data for which it is 
superficially not a good match. Of course, the same is true 
of other familiar statistics, such as the mean and standard 
deviation.  

So which correlation coefficient is most indicative in any 
particular instance? Here statistical theory encounters 
harsh reality. No empirical variable exactly matches the 
assumptions of a correlation coefficient. Even with 
natural discrete dichotomies, such as gender, there is 
always some fuzziness. Mendel’s genetic experiments 
have come under attack for the manner in which he may 
have manipulated the fuzziness in his data. 

So there are two criteria: (i) ease of communication and 
(ii) protection against misleading inferences. 

For ease of communication, the more familiar the 
coefficient is, the better, provided it does not produce a 
misleadingly incorrect value.  

For those coefficients which produce reasonable values, 
the temptation is almost always to report the highest (or 
most significant) relationship possible. This temptation is  
evident in factor analysis: the choice of communalities, 
rotation and obliqueness tends to be guided by the desire 
for a conspicuous finding. Thus, after the correlation 
reporting the highest or most significant value has been 
discovered, it is tempting to rationalize why that particular 
correlation coefficient is the “correct” one for those data. 

Guilford (1965, p. 325) points out that if the data accord 
with the biserial correlation, then there is an exact 
mathematical relationship between the biserial and point-

biserial. So, if both are computed their ratio must 

approximate specific values. So when this ratio is 
observed for empirical data, the biserial may be the 
correlation of choice. Under essentially all other 
conditions, Guilford recommends the more conservative 
point-biserial correlation. 

 0 1 

1 167 374 

0 203 186 

Phi correlation = Pearson = Point-biserial = 0.21 
Biserial correlation =  0.27 or 0.31 

Tetrachoric correlation = 0.34 

An early objection to the tetrachoric correlation was that 
its value could only be approximated. With modern 
computer power, the approximation can be so precise as 
to be considered exact. But other objections remain.  

Nunnally (1967, 123-4) remarks “There are very strong 
reasons for not [his emphasis] using the biserial and 
tetrachoric correlations in most of the ways they have 
been used in the past. …. Unless subsequent steps are 
made to turn the dichotomous variables into continuous 
variables, such estimates only serve to fool one into 
thinking that his variables have explanatory power beyond 
that which they actually have. It is tempting to employ 
biserial and tetrachoric correlations rather than phi and 
point-biserial correlations because the former are usually 
larger.” He adds “When the assumption of normality is 
not met, the estimates can be off by more than 20 points 
of correlation.” 

 1 2 3 4 5 

1 0 0 12 32 40 

2 0 4 23 66 23 

3 1 10 67 77 15 

4 1 22 133 40 3 

5 8 71 125 21 2 

Pearson correlation = 0.61 
Polychoric correlation = 0.67 

Computation by Uebersax (2000) 

Coote (1998, p. 404) has a provocative paragraph: 
“Product-moment correlation matrices are often used … 
although they are only appropriate for continuous 
variables (Joreskog and Sorbom, 1996). Information 
collected using five and seven-point Likert scales have 
ordinal properties (Bollen, 1989). Ordinal variables do not 
have origins or units of measurement and should not be 
treated as though they are continuous (Joreskog, 1994). 
Treating ordinal data as continuous increases the 
likelihood of correlated error variances, particularly where 
the initial factor loadings are large. Another disadvantage 
of using a product-moment correlation matrix with 
categorical data is that the standard errors and chi-square 
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test statistics are incorrect (Anderson and Gerbing, 1988). 
Where Likert scales are used polychoric correlations 
should be computed and analyzed.” 

But reality is rarely this clear-cut. The conceptualization 
of the ordinal scale required for the polychoric correlation 
accords with Samejima’s “graded response” model. The 
categorization is regarded as ordered but the 
categorization itself is considered arbitrary. 

A Rasch-consistent conceptualization would be a variant 
of the point-polyserial, with category intervals consistent 
with the corresponding Rasch-model ICC. In this regard, 
integer intervals are exact for two and three category 
scales, but generally too central for the extreme categories 
of longer rating scales. Consequently an integer-spaced 
point-polyserial would tend to misestimate the actual 
correlation for long rating scales, but generally only by a 
small amount. The effort required to improve on integer 
spacing does not appear to have a corresponding benefit. 

So, for correlations of Rasch-analyzed data for which the 
categorization is considered qualitatively substantive, the 
analyst would need to make a strong case to depart from 
correlation coefficients with the algebraic form of the 
Pearson product-moment correlation. These coefficients 
are the product-moment correlation itself, and the point-

biserial, point-polyserial and phi coefficients. 

 John Michael Linacre 

Anderson, J. C. & Gerbing, D. W. (1988) Structural 
Equation Modeling in Practice: A Review and 
Recommended Two-Step Approach. Psychological 
Bulletin, 103:3, 411-423. 

Bollen, K. A. (1989) Structural Equations with Latent 
Variables. New York: John Wiley and Sons. 

Coote, L. (1998) A Review and Recommended Approach 
for Estimating Conditional Structural Equation Models. 
Australia and New Zealand Marketing Academy 
Conference, University of Otago, Dunedin.  

Guilford J. P. (1965) Fundamental Statistics in 
Psychology and Education. New York: McGraw-Hill. 

Joreskog, K. G. (1994) On the Estimation of Polychoric 
Correlations and their Asymptotic Covariance Matrix. 
Psychometrika, 59:3, 381-389. 

Joreskog, K. G. and Sorbom, D. (1996) PRELIS 2: User’s 
Reference Guide. Chicago: Scientific Software 
International. 

Nunnally, J. (1967) Psychometric Theory. New York: 
McGraw-Hill. 

Olsson U. Maximum likelihood estimation of the 
polychoric correlation coefficient. Psychometrika, 1979, 
44(4), 443-460. 

Uebersax J.S. (2000) POLYCORR Polychoric Correlation 
EZ Version software. 

Fit to Models: 

Rasch Model  vs. Correlation Model 

Viewed as a statistical device, the Rasch model is one of 
thousands in current use. One of those thousands most 
frequently employed  is the Pearson Correlation Model.   

The Correlation Model 

The size of the Pearson product-moment correlation 
between two variables is frequently reported, sometimes 
accompanied by whether it is significantly different from 
0.00. But rarely reported are: 

1) whether the observed correlation departs insignificantly 
from 1.00, which is perfect correlation. But high 
correlations, regardless of their statistical significance, 
could be indicative of collinearity. Near-perfect 
correlation should be regarded with suspicion. 

2) whether the observations violate the assumptions 
underlying the Correlation Model.  Violations are rarely 
tested explicitly because the correlation model is too 

useful not to use. Pearson correlations are often reported 
for data which are known not to meet its assumptions. 

The Rasch Model 

The Rasch model is similarly too useful not to use. 
Further, near perfect fit to the Rasch Model should be 
regarded with suspicion. Empirical processes are uneven. 
The validity of scientific work has come into question 
when statistical findings appear to be too perfect. 

Taking the same position with regards to the Rasch Model 
as we do for the Correlation Model, the crucial question is 
not “Is the correlation statistically 1.0”, expressed as “Do 
the data fit the Rasch model statistically perfectly?” This 
question has been the focal point of most global fit 
analysis with the Rasch model. Instead the crucial 
question becomes “Is the correlation statistically different 
from 0.00”, expressed as “Is there a Rasch dimension 
which is significantly larger than a point?” 

The Rasch dimension reduces to the size of a point when 
the data are perfectly random.  Jacob Cohen (1992) 
suggests that, for the ratio of explained variance to 
unexplained variance, 2% is a small effect size, 15% is a 
medium effect size, and 35% is a large effect size. Recast 
this as the percentage of total variance explained and  2% 
is a small effect size, 13% is a medium effect size, and 
26% is a large effect size. For comparison, the variance 
explained by the Rasch measures for the Liking for 

Science data is 81% and for the Knox Cube Test data is 
99%.  Even the variance explained for a relatively central, 
poorly fitting, clinical data set (a sample of opportunity) is 
33%. Rasch papers can routinely report effect statistics, 
which, if they were the findings of correlation studies, 
would produce great joy among social scientists. 

John M. Linacre 

Cohen J. (1992) A Power Primer, Psychological Bulletin, 
112, 155-159. 



1030                         Rasch Measurement Transactions 19:3 Winter 2005 

Standard Errors: Means, Measures, Origins and Anchor Values
Statistics text books explain the “standard error of the 
mean”, but are generally silent about the “standard error 
of a measure”. How do they relate? 

The standard error is the modeled standard deviation of 
the observed estimate around the unobservable “true” 
value.  In practice, the observed estimate substitutes for 
the “true” value and we think of the standard error being 
centered on observed estimate.  

Both the observed estimate and its standard error are 
computed from the data. Each data point gives us an 
estimate of the mean or the measure, and the 
accumulation of the estimates provides the final best 
estimate along with its precision, its standard error. Thus: 

Accumulation of estimates (one per observation) 
=> mean parameter estimate ± S.E. of estimate 

For a typical “text book” normal distribution, the 
parameter of interest is the mean, which is the sum of all 
perfectly-precise observations divided by their count. And 
its standard error is the sample standard deviation of the 
observations divided by the square-root of the count. 

A Rasch measure has parallels to a sample mean. 
Conceptually, each qualitative observation (“Right”, 
“Wrong”, etc.) provides an estimate of the relevant 
measure, so 

Accumulation of estimates (one per observation) 
=> measure estimate ± S.E. of estimate 

Implementing this directly is awkward, It is more 
convenient to rearrange the computation:  

Estimate of (accumulation of observations) 
=> measure estimate ± S.E. of estimate 

Here, the standard error is computed by summing the 
statistical (Fisher) information across the observations, 
and then the standard error is the square-root of the 
inverse of the summed information. 

For example, consider 1000 reasonably targeted 
observations of a dichotomous item. Experience shows 
that a reasonable p-value for such an item is .8. So the 

average binomial variance ≅ p-value*(1 - p-value) = .8*.2 

= .16 ≅ average Fisher information. So the information in 
1000 observations = 1000 * .16 = 160. Standard error of 
the logit estimate = 1 / square root (Fisher information) = 
1 / square-root (160) = .08 logits. The ease of this type of 
computation is one reason the Rasch model is formulated 
in logits, rather than in log10, probits, etc. 

Local Origins and Standard Errors 

The standard error of the mean is usually computed in an 
absolute frame of reference in which the zero point is 
defined external to the data. Rasch measures are defined 
relative to a local zero point. How does this impact 
standard error computations? 

In the same way as the zero point on a temperature scale 
is an arbitrary point, chosen according to some definition, 
e.g., “the freezing point of water”, the zero point (local 
origin) of a Rasch measurement scale is an arbitrary point 
on the latent variable, defined in some manner. Typical 
choices are “the average difficulty measure of all items”, 
“the difficulty of a specific item” or “the average ability 
measure of all respondents”. 

In general, the Rasch local origin is considered to be the 
absolute location on the latent variable with which the 
empirically-derived location happens to coincide. Thus 
the measures and standard errors are considered to be in 
an absolute frame of reference. 

However, when comparing measures across parallel 
analyses, shifts in the locations of local origins might be 
crucial. Accordingly the standard error of the empirical 
zero could be included. This suggests that the most stable 
possible choice of local origin be made to minimize the 
need for this computation. In general, if the mean of the 
item difficulties is chosen, and the same set of items is 
administered a second time, then the standard error of the 
mean-item “origin” is the average standard error (root-
mean-square-error, RMSE) of the items. Typically, this 
would be much smaller than the standard error of a person 
measure. So the joint standard error of the difference 
between two measures across test forms comprising the 
same items would approximate: 

SE(measure1 - measure2) = √ ( SE(measure1)
2 

+ SE(origin1)
2  + SE(measure2)

2 + SE(origin2)
2 ) 

Anchor Values and Standard Errors 
An anchored (fixed) measure is treated as though it is an 
estimate of the “true” value of the parameter, so it is 
reported along with the standard error around the “true” 
value. If the corresponding local empirical value is also 
computed, this can be compared with the anchor value 
along with its standard error in order to test the hypothesis 
that the data were generated by the true (anchor) value. 

John Michael Linacre 

[My thanks to a reader who pointed out a mistake in the 

original published version - corrected here.]
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Communicating Conclusions 

 “We have the duty of formulating, of summarizing, and 
of communicating our conclusions, in intelligible form, in 
recognition of the right of other free minds to utilize them 
in making their own decisions.”  

Ronald A. Fisher, 1955, Statistical methods and 
scientific induction. Journal of the Royal Statistical 
Society, B, 17, 69-78. 

The Truth about Statistical Models 

“All models are wrong. Some are useful.” 

George E. P. Box, University of Wisconsin 

 
“The hallmark of good science is that it uses models 

and ‘theories’ but never believes them” 

Martin Bradbury Wilk,  in John Tukey, The future of data 

analysis, Ann. Math. Statist. 33, 1-67, p.7. 

 
“Models must be used but must never be believed.” 

Attributed to Martin Bradbury Wilk 

The Truth about Significance Tests 

“Significance tests are things to do 
while one is trying to think of something sensible to do.” 

Attributed to Martin Bradbury Wilk 

The Truth about Item Response Theory 

 “Building statistical models is just like this. You take a 
real situation with real data, messy as this is, and build a 
model that works to explain the behavior of real data.”  

Martha Stocking’s summary of Item Response Theory, the 

statistical methodology of Frederic M. Lord (1912-2000), 

New York Times, 2-10-2000 

The Truth about Factor Analysis 

 “Factor analysis is useful, especially in those domains 
where basic and essential concepts are essentially lacking 
and where crucial experiments are difficult to conceive ... 
In a domain where fundamental and fruitful concepts are 
already well formulated and tested, it would be absurd to 
use the factorial methods except for didactic purposes to 
illustrate factorial logic.” 

L.L. Thurstone (1947) Multiple Factor Analysis, Chicago: 

University of Chicago Press. p. 56 

. 

The Truth is in the Eye of the Beholder 
A reporter showed a photograph of the Earth taken from 
Space to the late Samuel Shenton, then President of  the 
International Flat Earth (Research) Society. Shenton 
studied it for a moment and said, “It’s easy to see how 

such a picture could fool the untrained eye.” 
Attributed

Rasch-related Conferences 

IOMW 2006 
The 13th International Objective Measurement Workshop 

April 5–7, 2006 (Wed.-Fri) 
University of California, Berkeley, CA, USA 

http://bearcenter.berkeley.edu/IOMW2006/ 

AERA 
American Educational Research Association 

April 8-12, 2006 (Sat.-Wed.) 
San Francisco, CA, USA 

www.aera.net 
 

Midwest Objective Measurement 

Seminar - MOMS 
Friday, December 9, 2005 

Rehabilitation Institute of Chicago and the  
Institute for Objective Measurement 

at the Northwestern University Kellogg School of 
Management 

Is it Possible To Solve the Incoherence of Rasch 
Measurement? George Karabatsos, Ph.D.  University of 

Illinois at Chicago 

Bookmark Standard Setting. John Stahl, Ph.D.,   

Promissor, Inc. 

Facets Analysis for OSCEs. Doug Lawson, DC, MSc, 

PhD(c), University of Calgary, Canada 

Measuring the Impact of Rater Severity Drift on Student 
Ability Measures. Lidia Dobria, Everett Smith, Ph.D., 

Carol Myford, Ph.D., University of Illinois at Chicago 

Score adjustment for rater bias in performance 
assessment. Cherdsak Iramaneerat, M.D., M.H.P.E.  UIC 

and Measurement Research Associates, Inc. 

Equating functional status measures across post-acute 
care rehabilitation settings. Trudy Mallinson, Ph.D., 

OTR/L, NZROT, Rehabilitation Institute of Chicago 

A New ADLM for Spinal Cord Injury. Anne M. Bryden, 

OTR/L The Cleveland FES Center, MetroHealth Medical 

Center Rehabilitation Engineering Center  and Nikolaus 

Bezruczko, Ph.D., Measurement and Evaluation 

Consulting 

Differential Item Functioning with Winsteps and Facets: 
Implications For Triage in Substance Abuse and 
Dependence. Ken Conrad, Ph.D., UIC and Michael 

Dennis, Ph.D., Chestnut Health Systems 

Study Skills  Self-Efficacy of Secondary School Students 
in Hong Kong. Qiong (Joan) Fu,  UIC; Mantak Yuen, 

University of Hong Kong;  Lidia Dobria, UIC, Everett V. 

Smith, Ph.D, UIC. 

http://bearcenter.berkeley.edu/IOMW2006/
http://www.aera.net
http://bearcenter.berkeley.edu/IOMW2006/
http://www.aera.net
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Aspect Rasch Dichotomous Model 
Item Response Theory: 

One-Parameter Logistic Model 

Abbreviation Rasch 1-PL IRT 

Motivation 

Distribution-free person ability estimates and 
distribution-free item difficulty estimates on 
a linear latent variable 

Computationally simpler approximation to the 
Normal Ogive Model of L.L. Thurstone, 
D.N. Lawley, F.M. Lord 

Persons, objects, subjects, 

cases, etc. 

Person n of ability Bn, or  

Person ν (Greek nu) of ability βν in logits 

Normally-distributed person sample of ability 

distribution θ, conceptualized as N(0,1), in 
probits 

Items, agents, prompts, 

probes, multiple-choice 

questions,  etc.  

Item i of difficulty Di, or 

Item ι (Greek iota) of difficulty δι in logits 

Item i of difficulty bi (the “one parameter”) in 
probits 

Nature of binary data 
1 = “success” - presence of property 
0 = “failure” - absence of property 

1 = “success” - presence of property 
0 = “failure” - absence of property 

Probability of binary data 

Pni  = probability that person n is observed to 
have the requisite property, “succeeds”, 
when encountering item i 

Pi(θ) = overall probability of “success” by person 

distribution θ on item i 

Formulation: 

exponential form 

e = 2.71828 
in
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Formulation: 

logit-linear form 

loge = natural logarithm 
in
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Local origin of scale: zero of 

parameter estimates 

Average item difficulty, or difficulty of 
specified item. (Criterion-referenced) 

Average person ability. (Norm-referenced) 

Item discrimination 

Item characteristic curves (ICCs) modeled to 
be parallel with a slope of 1 (the natural 
logistic ogive) 

ICCs modeled to be parallel with a slope of 1.7 
(approximating the slope of the cumulative 
normal ogive) 

Missing data allowed Yes, depending on estimation method Yes, depending on estimation method 

Fixed (anchored) parameter 

values for persons and items 
Yes, depending on software 

Items: depending on software. Persons: only for 
distributional form. 

Fit evaluation Local, one parameter at a time Global, accept or reject the model 

Data-model mismatch 

Defective data do not support parameter 
separability in a linear framework. Consider 
editing the data. 

Defective model does not adequately describe 
the data. Consider adding discrimination (2-PL), 
lower asymptote (guessability, 3-PL) parameters. 

Differential item functioning 

(DIF) detection 
Yes, in secondary analysis Yes, in secondary analysis 

First conspicuous 

appearance 

Rasch, Georg. (1960) Probabilistic models 
for some intelligence and attainment tests. 
Copenhagen: Danish Institute for 
Educational Research. 

Birnbaum, Allan. (1968). Some latent trait 
models. In F.M. Lord & M.R. Novick, (Eds.), 
Statistical theories of mental test scores. 
Reading, MA: Addison-Wesley. 

First conspicuous advocate Benjamin D. Wright, University of Chicago Frederic M. Lord,  Educational Testing Service 

Widely-authoritative 

currently-active proponent 

David Andrich, Murdoch Univ., Perth, 
Australia 

Ronald Hambleton, University of Massachusetts 

Introductory textbook 
Applying The Rasch Model. T.G. Bond and 

C.M. Fox 
Fundamentals of Item Response Theory. R.K. 

Hambleton, H. Swaminathan, and H.J. Rogers. 

Widely used software Winsteps, RUMM, ConQuest Logist, BILOG 


