Equating Constants with Mixed Item Types

Question: I am doing non-equivalent-groups common-item equating of two tests using the Rasch model. My common items are 20 multiple-choice items (worth 1 point) and 1 partial credit (essay) item worth 4 points. How do I compute an equating constant?

Response: Let's assume a scatter-plot of the difficulties of the 21 items on the two tests indicates that their pattern approximates an identity line. (If it does not, you need to investigate whether the "common items" really are common.) You now need to compute a defensible equating constant.

Check if the structure of the partial credit item has changed between tests. The default "item difficulty" for a partial credit item is the point at which top and bottom categories are equally probable. The bottom category of a long scale tends to be relatively rarely and idiosyncratically used. So, for equating purposes, it may be more robust to define the item difficulty to the be point at which the two most frequent categories (across the two tests) are equally probable. This provides a more stable, and statistically more secure, "item difficulty" for the polytomous item.

If your software does not report one overall partial-credit item difficulty in each analysis, but instead a set of threshold difficulties, then average the threshold difficulties for an overall difficulty.

A. The examination board may assume that the one 4-point partial credit item is equivalent to 4 dichotomous items. If so the equating constant between the two tests is:

((Sum of MCQ common-item difficulty differences) + 4*(partial credit difficulty difference)) / (20 + 4)

B. The examination board may want the one 4-point partial credit item to have the same influence as all 20 dichotomous items. If so the equating constant is:

((Sum of MCQ common-item difficulty differences) + 20*(partial credit difficulty difference)) / (20 + 20)

C. An option beloved of statisticians is "information-weighting" (i.e., weighting by the inverse of the item-difficulty-standard-error-squared). This will give the 4-point partial credit item about 6 times the influence of a 1-point dichotomous item.

D. Inverse-standard-error weighting ("effect-size" weighting) of the items is more consistent when combining subtests, see RMT 8:3, p. 376. This will give the 4-point partial credit item about 2.5 times the influence of a 1-point dichotomous item.

In this example, to specify that for 1 partial-credit item = 4 dichotomous items would also be to opt for a compromise between the two statistical viewpoints.


Equating constants with mixed item types, … Rasch Measurement Transactions, 2004, 18:3 p. 992



Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt183o.htm

Website: www.rasch.org/rmt/contents.htm