The Illusion of Measurement: Rasch versus 2-PL

Many researchers who are attempting to measure latent constructs appreciate the special properties of the Rasch model and view it as an ideal model, but, at the same time, they tend to complain about the "inflexibility" of the model when it comes to "explaining" data. The two-parameter logistic model is then seen as a possible resort. However, with discrimination varying from item to item, the very meaning of the construct changes from point to point on the dimension. In other words, measurement in its true sense has not been achieved.

In the dichotomous Rasch model, for each item response only two parameters are relevant, the item location parameter δ and the person location parameter ξ (using Rasch's multiplicative notation). The probability of a correct response then is ξ / ( ξ + δ ) (Rasch 1960/1980, p.107). As Georg Rasch points out, if we knew the exact item parameter and the probability of a correct response, the person location could be computed directly. Vice versa, if we knew the person parameter and the probability, we could compute the item location. Under the two-parameter logistic (2-PL) model, this is not possible without further information because there are infinitely many combination of item difficulty and discrimination which yield the same probability for a given person location.

The plot shows the adjusted log-odds of success on five 2-PL items for persons at five ability levels. The five ability levels are -2, -1, 0, 0.1, and 2 logits. The items have difficulty and (discrimination) of -2 (0.8), -1.0 (1.8), 0.0 (0.4), 0.1 (1.5), and 2 (1.2). For each person-item encounter, the 2-PL probability of success is computed. This is converted into log-odds and adjusted for person ability. The plot thus shows the local Rasch difficulty of each item for each person. If the items were in accord with the Rasch model, this plot would collapse to an identity line. Since the 2-PL item characteristic curves intersect, there is a different "Rasch item difficulty" for each item for each level of person ability. In other words, the meaning of the construct defined by the item difficulty differs for each person location. Thus the apparent advantage of better describing the data set when using the 2-PL, rather than a Rasch model, comes at the expense of a highly fuzzy definition of the latent continuum . "Measurement" becomes an illusion, because there is no precise definition of what is being measured.

Thomas Salzberger
Vienna University of Economics and Business Administration
Austria

Rasch, Georg (1960/1980). Probabilistic Models for Some Intelligence and Attainment Tests. Danish Institute for Educational Research & https://www.rasch.org/books.htm

Plot: Local item difficulty of 5 2-PL items for 5
abilities
Plot: Local item difficulty of 5 2-PL items for 5 abilities

The illusion of measurement: Rasch versus 2-PL. Salzberger, T. … 16:2 p.882


The illusion of measurement: Rasch versus 2-PL. Salzberger, T. … Rasch Measurement Transactions, 2002, 16:2 p.882



Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt162j.htm

Website: www.rasch.org/rmt/contents.htm