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Review of Reviews of Bond & Fox (2001)
Trevor Bond and Christine Fox have accomplished a 
remarkable feat: writing an academic best-seller about an 
obscure area of statistical measurement. Sales figures assert 
that “Applying The Rasch Model: Fundamental 
Measurement in the Human Sciences” (Mahwah NJ: 
Lawrence Erlbaum Assoc.) has succeeded in reaching its 
goal of communicating highly technical material in a non-
technical way. 
 
For almost 20 years, Ben Wright toyed with writing a non-
technical introductory Rasch text. Ben had a model of what 
he wanted to do, his “Conversational Statistics in Education 
& Psychology” (Wright & Mayers, McGraw-Hill, 1984). 
That book focuses on one dataset and each chapter uses 
different statistical tools to analyze it. Ben perceived that 
the “spiral of conversation” develops into the “arrow of 
knowledge”. But Ben’s introductory text too quickly 
became clogged with mathematical and philosophical 
minutia, and so no progress was made. 
 
Bond & Fox are relatively new to the Rasch field. They 
remember what they needed to know, and what they didn’t 
need to know; what they needed to understand, and what 
they didn’t need to understand. They follow the “spiral of 
conversation”, reiterating ideas and examples, but from 

 
Bond & Fox (2001) Figure 3.1, p. 22 

different perspectives, so enabling the reader to accumulate 
knowledge and experience. The book is a pleasant read. It is 
nicely laid out and typeset. It has a comprehensive glossary 
and a suitably non-technical reference list. It can be used 
for personal study or as a classroom text. 
 
Of course, the book runs into some trouble with expert 
reviewers, such as Wim van der Linden (2001), Mark 
Wilson (2002), Ed Wolfe (2002) and myself. I say “of 
course” because that is always the fate of introductory texts, 
such as school books. “Not one of the [middle-school 
science] books we reviewed reached a level that we could 
call scientifically accurate as far as the physical science 
contained therein.” (John Hubisz, 2001). Sweeping 
generalizations, substantive short-cuts, and imprecise use of 
technical terms are features of introductory texts. One of 
my own pedanticisms is to distinguish between “precision” 
and “accuracy”. Sure enough, the very first time “precision” 
appears (on p. xvii), “accuracy” is meant. Our reviewers 
point out more examples. 
 
What is to be done? Hopefully, as with the first 100 years 
of the “King James” Bible, the most blatant inaccuracies 
and omissions will be corrected in the next edition. 
Instructors would be wise to read ahead and provide 
students with a sheet of annotations for each chapter, 
focusing on those features relevant to their students. As van 
der Linden writes, “a statement that is wrong can never be 
understood.” Though van der Linden and I would 
undoubtedly disagree as to exactly what is right! However, 
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we, along with Wilson, definitely agree that European 
research is conspicuous for its absence. The next edition 
must include Fischer & Molenaar’s (1995) “Rasch Models” 
in its list of “Classic Reference Texts”. 
 
Wolfe correctly says that “there is insufficient information 
… to allow readers to apply the Rasch model to their own 
data sets.” This flaw I find in many statistics texts, cookery 
books and guidebooks. So long as you follow closely along 
with the author, all is well, but branch out on your own, and 
you are quickly lost. Again, it requires an instructor or 
coach to help the neophyte, particularly in the operation of 
ever-changing software. 
 
A fundamental question about “…: Fundamental 
Measurement …” is what is measurement? We have three 
answers. The Bond & Fox Glossary answer is “The location 
of objects along a single dimension on the basis of 
observations which add together.” An amazingly succinct 
statement from which the Rasch model can be deduced in 
two ways. If the “observations” are scored qualitative 
indicators, then the “add together” specifies that the raw 
score is a sufficient statistic, and the Rasch model follows. 
On the other hand, if the “observations” are differences 
between person abilities and item difficulties, then the “add 
together” is Campbell concatenation of those differences, 
and the Rasch model follows. Thus Bond & Fox assert, in 
my words, “if you want to measure, you’ve got to use a 
Rasch model!” 
 
Van der Linden answers: “I have difficulty recommending 
this book as an introductory text to modern measurement. 
Readers will be much better off with a balanced, elementary 
text [such] as Hambleton, Swaminathan and Rogers 
(1991).” But Hambleton’s book is actually about IRT, i.e., 
data description in a quasi-linear framework, which is only 
measurement in a Stevens sense, as Michell (1999) 
“Measurement in psychology…”, referenced in Bond & 
Fox, explains. This suggests that the relationship between 
Rasch and IRT needs more than one page in Bond & Fox, 
particularly because more advanced books in the field, such 
as Embretson & Hershberger’s (1999) “New Rules” and 
van der Linden & Hambleton’s (1997), “Handbook of 
Modern Item Response Theory” unabashedly classify 
Rasch under IRT. Wilson aptly summarizes the problem: 
“one person’s oversimplification is another person’s strong 
measurement philosophy.” 
 
Van der Linden’s final recommendation is difficult to 
comprehend, “better still, the introductory chapter and 
chapters 5 and 6 in the original text by Rasch (1960).” 
Certainly read them: Chapter 1 ends up with a discussion of 
binomial trials using mice in a maze. Chapter 5 shows how 
to draw empirical ICCs. Chapter 6 straightens them out 
with a logistic transformation. But Wright & Masters 
(1982) “Rating Scale Analysis” does much, much more. For 
“non-dichotomous” readers, it is the obvious next step after 
Bond & Fox. 
 

Wolfe’s answer to “what is measurement” restricts its use: 
“there is no discussion of sample size requirements …. the 
book could lead a practitioner to erroneously conclude that 
the Rasch model can be utilized with virtually any data set.” 
Certainly, we need to toss a coin more than once to check 
that it is fair. But how many times? 3, 5, 20, 1000? After 3 
or 4 tosses we have a good idea. By the time we get to 10 
we are convinced. Wright & Stone’s (1979) “Best Test 
Design” (mentioned favorably by van der Linden) is based 
on the analysis of a data set comprising 35 children 
encountering 18 items. Only one Bond & Fox data set has 
fewer observations. 
 
But this raises another fundamental question: when is there 
too little data for Rasch measurement to be informative? Is 
there a better alternative to Rasch for the analysis of small 
data sets? In the early days, test developers would make 
remarks such as “Rasch analysis ruined my perfectly good 
test!” In fact, Rasch analysis did not change their tests at 
all. It merely pointed out the flaws that were there all along. 
Ben Wright advised students to start Rasch analysis of their 
data just as soon as they started collecting it. Don’t wait till 
you have 1000, 100 or even 10 cases to discover that a 
typographical error is making the answers to Question 3 
unintelligible. Even when precision is lacking due to small 
sample size, a concern of Wolfe, data-quality-control and 
construct validity must still be there. If the data can 
possibly be Rasch analyzed, do it! With computers it takes 
almost no time, and what you learn may save you weeks of 
agony later. To take a statement by Fred Lord somewhat 
out of context, “Small N justifies the Rasch model.” 
 
Finally, along with Wolfe, “I applaud the authors …”, and, 
along with Wilson, “I judge that Bond and Fox have largely 
succeeded …” Purchase this first edition, in anticipation of 
an even better second edition! 

John M. Linacre 
 
Hubisz, J. (2001) Review of Middle School Physical 
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Musical Temperament 
Musicians wrestle with equal-interval measurement. The 
twelve tones in the chromatic scale are shown in column 1 
of the Table. “Just intonation” defines the consonance we 
hear when the two notes sounded together bear a simple 
numeric ratio to each other. In column 2 of the Table are 
the well-known ratios from Pythagoras. They are all 
derived from the ratios of the products of the prime 
numbers 2, 3, and 5. Unison has a frequency ratio of 1:1 
(C:C, i.e., middle C on the piano to middle C) and the 
octave is 1:2 (C:c, i.e., middle C to the C eight white keys 
to the right). All tuning systems accept these fundamental 
ratios. Next comes the perfect fifth (C-G) with the ratio 
2:3 and the perfect fourth (C-F) with the ratio 3:4.  
 

Tone Concordant 
Frequency Ratio Exact Ratios 

c 8 = 1:2 8.00 
B  7.55 

A#  7.13 
A  6.73 

G#  6.61 
G 6 = 2:3 5.99 
F#  5.66 
F 5.33 = 3:4 5.34 
E 5 5.04 

D#  4.76 
D 4.50 = 8:9 4.49 

C#  4.24 
C 4 = 1:1 4.00 

 
Column 3 shows the steps of the chromatic scale 
indicated by equal frequency ratio divisions using the 
multiplicative constant of (2)1/12 = 1.0595. This table 
shows how the Pythagorean system, derived from studies 
of the monochord, corresponds to the equal interval 
system. This also shows why “music” was part of the 
quantitative “quadrivium”, the four liberal arts required in 
medieval times to advance from B.A. to M.A., the other 
three being arithmetic, geometry and astronomy. The 
“trivial” linguistic arts, the “trivium”, were grammar, 
rhetoric and logic. 
 
A natural major third is 5:4 and consonant. In exact ratio 
tuning, E with C, although a major third, is 5.04 to 4 and 
very discordant, . An exact cycle of four pure fifths, C-G-
d-a-e’ produces a major third out of tune when compared 
to a true major third of e’ to c’ of 5:4. This discord was 
known as the “comma of Didymus”. Historians of 
musical theory consider this discord the reason why early 
medieval music extolled the tone, fourth, fifth, and 
seventh as “concordant” and treated the major third as 
“discordant”, a wolf chord. 
Until about the middle of the eighteenth century, ninety-
five per cent of all pipe organs were tuned in mean-tone 

temperament. Finn Viderø has made several recordings on 
just such an organ built in 1616 in the castle at 
Frederiksborg, Denmark. I have heard the organ in recital 
there, and it produces a truly beautiful sound. 
 
The commonest mean-tone system uses eight major thirds 
(C-E, E-G#, Bb-D, D-F#, E-G#, Bb-D, D-F#, F-A, A-C#, 
Eb-G, G-B). These are exactly in tune and many common 
chords can be produced. Musicians have long thought 
these intervals were more pleasant to hear than those in 
equal temperament where no major third, or any other 
interval, is in natural tune save the octave. However, 
mean-tone temperament makes only about a dozen keys 
available, and the rest don’t sound well. 
 
In Scales: Music and Measurement (RMT 15:3, p. 838) 
four interesting comparisons were made between musical 
tunings and measurement theory: 
1. “… mathematical perfections were claimed for 
‘Pythagorean’ tunings, as they are now for some IRT 
models.” 
“Just intonation” is both mathematically precise and 
musically satisfying, but only in certain keys. It does not 
have objectivity or generality, i.e. it cannot survive a 
transposition to other keys. The “equal temperament” 
scheme overcame these drawbacks. 
2. “… special practical virtues were perceived in ‘just 
meantone’ tunings, as they are now in raw-score-
weighting schemes.” 
Certainly there are unique advantages for specific keys, 
but no generality is possible. Without generality, our 
music is restricted. 
3. “Pythagorean tuning was simple, and musically 
effective. Its limitation was that only 11 of the 12 notes of 
an octave could be in tune simultaneously. Yet it was so 
easy and familiar, just as raw scores are today, … .” 
We usually begin with the system first discovered and 
advance. Oppenheimer (1955) said, “all sciences, arise as 
refinements, corrections, and adaptations of common 
sense.… these are traits that any science must have before 
it pretends to be one. One is the quest for objectivity. I 
mean not in a metaphysical sense; but in a very practical 
sense … .” (p. 128) 
4. “… in a remarkable parallel to the current 
proliferation of psychometric models, ‘the history of 
tuning is saturated with clever and original theories that 
have no practical application.’” 
A host of alternate tunings have been proposed, and many 
have a long historical lineage, but the major question has 
always remained, “What generality exists?” Without 
generality there can be no application.  

Mark H. Stone 
 

Oppenheimer, R. (1955). Analogy in science. Presented at 
the 63rd Annual Meeting of the American Psychological 
Association, San Francisco, CA, September 4, 1955.



874 Rasch Measurement Transactions 16:1 Summer 2002 

The Measurement of Vision Disability
Robert Massof’s (2002) article in Optometry and Vision 
Science is a landmark in the history of Rasch measurement 
publishing, a virtual textbook on what measurement has 
been and could be. It comprehensively integrates Rasch-
calibrated vision disability scales not only into the history 
of vision measurement, but into the historical role of 
measurement in both commerce and science. Massof 
provides excellent accounts of measurement from the 
perspectives offered by Likert, Thurstone, Classical Test 
Theory, IRT, and Rasch. His detailed examination of 
Likert’s argument and method is priceless.  
 
Massof's application of five criteria of fundamental 
measurement theory (additivity, double cancellation, 
solvability, the “all gaps are finite” Archimedean axiom, 
and independence) as a basis for model choice is an 
apparently independent development of the same argument 
recently presented by George Karabatsos (Bond & Fox, 
2001, p. 195), and develops in greater detail the same 
arguments as those presented by Wright (1985, etc.). Like 
Karabatsos, Massof shows that the mathematical structure 
of the 2P IRT model violates each of the requirements for 
fundamental measurement.  
 
Plots comparing Rasch and 2P IRT analyses of the same 
data show the results to be much more similar than is the 
case in my own recent explorations in this area, due in part 
to Massof's “fortuitous choice of a data set that minimized 
the differences between models (e.g., there was relatively 
little variation between items in the discrimination 
parameter of the IRT model, effectively making it a 'noisy' 
Rasch model)” (Massof, p. 538).  
 
The article does not shy away from mathematical 
treatments and expositions of principle. It includes 33 
equations, unusual for articles presenting measurement 
theory outside of technical psychometrics journals. Ten of 
the equations are associated with the IRT presentation, and 
15 of them with Rasch models, and associated error, fit, and 
reliability statistics. Full credit is given where due, with 
extensive bibliographic citations (107 total) of Andersen, 
Andrich, Masters, Michell, Schulz, Smith, Wright, and 
others. Unfortunately, it appears that the article was in press 
when the Bond & Fox (2001) book came out, and so this 
resource is left unmentioned.  
 
Empirical evaluations of statistics and models are the order 
of the day, with 37 numbered graphics in the article, the 
majority of which are scatterplots. The article includes a 
section focusing on Monte Carlo simulations that has the 
aim of demonstrating to the skeptic “that the Rasch model 
generates verifiable estimates of the latent variable.” A data 
set of simulated observations from 1,000 respondents was 
designed from known values for 15 items, and was 
modified five times so as to include random responses for 
3, 6, 9, 12, and all 15 items. The resulting calibrations and 
measures are plotted against their true values and against 

their fit statistics. Figure 29, reproduced from the article, 
shows the six plots of the measures versus their true values 
for each of the variations in the number of random items.  
 
As expected, the scatterplots show a progressive movement 
away from 1) the identity line to a horizontal line centered 
at 0.0 logits for the comparisons of the calibrations and 
measures with themselves; and 2) a largely vertical spread 
to a horizontal line centered at 0.0 logits for the 
comparisons of the calibrations and measures with their fit 
statistics. The latter are interesting for their independent 
support for work by Richard Smith showing that misfitting 
anomalous responses are easiest to detect when the 
proportion of problematic items and/or 
examinee/respondents is low.  
 
The standardized infit statistics for simulations with fewer 
random items easily isolate these “noisy” items at the high, 
positive end, but when there are more random items than 
not, the fit distribution settles right into the -2.0 to 2.0 range 
where one might think all is well (apart from the fact that 
the items all calibrate to 0.0). The results emphasize the 
value of strong theory and close study of construct 
validity, since random data are not likely to be produced 
from carefully designed questions asked of persons sampled 
from a relevant population.  
 
The article briefly takes up some neglected history of Rasch

Buy these Rasch books 
 … before it’s too late! 

 
“Objective Measurement: Theory into Practice”, 
Vols. 1-5, the proceedings of International Objective 
Measurement Workshops since 1989, are now titles 
of Greenwood Press, www.greenwood.com. But how 
long will they keep these formerly Ablex books in print? 
 
Each volume contains papers explaining theoretical 
advances and practical applications of Rasch 
measurement. Add missing volumes to your own 
library, or recommend that your academic library buy 
the set before they disappear off the market. Good sales 
may even encourage the publishing of Vol. 6! 
 
In Vol. 1, William P. Fisher Jr. discusses Rasch’s 
separability theorem, and Matthew Schulz describes test 
vertical equating. In Vol. 2, George Engelhard, Jr. 
discusses invariance, and Mary Lunz explains computer-
adaptive testing. In Vol. 3, Ray Adams and Mark Wilson 
discuss the RCML model, and John Stahl examines rater 
behavior. In Vols. 4 and 5, … Oops! They are not on my 
shelf. I’d better move fast to www.greenwood.com … 
 
Vols. 1-5. ISBN: 1-56750-182-6 etc. Hardback: $89.95, 
paperback $32.95 each. 

http://www.greenwood.com
http://www.greenwood.com
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applications to vision disability measurements, recounting 
the work of Wright, Lambert, and Schulz at Hines VA 
Hospital in the Chicago suburbs in the 1980s. Massof (p. 
545) says: 
 
“Like many other milestones in psychometrics, the use of 
Rasch analysis to measure vision disability can trace its 
origins to the University of Chicago. Georg Rasch was the 
father of Rasch analysis, but Benjamin Wright must be 
considered its legal guardian. Wright and his students and 
colleagues at the University of Chicago further developed 
and advanced Rasch’s models, developed and validated 
analytic tools, and promoted and facilitated applications of 
Rasch models to a wide variety of fields.” 
 
Massof (p. 548) also makes brief notes of the convergence 
of different approaches to measuring visual abilities on a 
common construct, with the realization that the “different 
measurements can easily be transformed into a common 
unit.” 
 
The article concludes (p. 550) with strong statements on the 
value of Rasch measurement, statements that are supported 
by the thorough and extensive arguments and 
demonstrations presented: 
 
“Many scientists have long been suspicious of the cavalier 
assertions by developers and users of visual function 
questionnaires that the average of patient ratings across 
questionnaire items is a valid measurement scale. With 
Rasch analysis, the validity of an instrument does not 
depend on inferential arguments and correlations with 
external variables. Rather, it exists on objective statistical 
tests of the model as an explanation of the data.” 
 
Massof's presentation of this work in the context of a field 
that has a long history of creating and maintaining reference 
standard metrics for its primary variables of interest bodes 
well for the extension of metrological networks away from 
their historical origins in the domains of physical variables 
into new homes in the domains of psychosocial variables. 
Those who act on the opportunity for the advancement of 
scientific and human values presented by the work of Rasch 
and others stand to make fundamental contributions. 
Massof's article will no doubt prove to be a powerful 
motivation to many who read it.  

William P. Fisher, Jr. 
 

Bond, T., & Fox, C. (2001). Applying the Rasch model: 
Fundamental measurement in the human sciences. Mahwah, 
New Jersey: Lawrence Erlbaum Associates.  
 
Massof, R. W. (2002). The measurement of vision 
disability. Optometry and Vision Science, 79(8), 516-52.  
 
Wright, B. D. (1985). Additivity in psychological 
measurement. In E. Roskam (Ed.), Measurement and 
personality assessment. North Holland: Elsevier Science.  
 

Report from Italy 
Professor David Andrich from Murdoch University, Perth, 
Western Australia, held a Lecture at the Maugeri 
Foundation in Pavia, Italy, on June 3rd 2002. The Lecture 
was entitled "Fundamental measurement: principles and 
practice of Rasch analysis," and it was nested within a half-
day conference entitled "Rasch analysis: the same meter 
from Human Sciences to Medicine: a meeting with David 
Andrich." 
 
The Salvatore Maugeri Foundation is the largest Institute 
for Rehabilitation Medicine in Italy (www.fsm.it). Luigi 
Tesio, M.D., from the Italian Chapter of the IOM, is 
heading there a 50-bed inpatient rehabilitation unit.  
 
Some 150 persons attended, coming from all parts of Italy. 
About half of them came from a mathematical-statistical 
background, while the other half was made up by 
physicians, physical therapists, and psychologists: 
apparently, quite a heterogeneous audience. It was a hard 
challenge to tell something interesting, yet technically 
elevated, to either of the halves. 
 
The conference was opened by Prof. Giorgio Vittadini, 
Director of the Center for Research on Services to the 
Persons, which is co-sponsored by five Italian Universities. 
The Center studies the optimization of services such as 
health care, social assistance, education, and urban life 
planning. It soon captured the enormous strength of Rasch 
modeling in the construction of valid scientific measures of 
person-based variables. 
 
David Andrich introduced the concepts of fundamental 
measurement. His presentation enabled statisticians to 
appreciate the originality of the mathematics (basically, the 
"prescriptive" rather than "descriptive" nature of the 
model), yet simultaneously health care and education 
professionals perceived the versatility of the model in 
constructing person variables. The clue to this success was 
the emphasis Professor Andrich placed on the philosophical 
thinking lying behind the mathematics themselves, i.e., 
what counting and measuring are, why we need to 
challenge the data with a model , not adapting the model to 
data, etc.). This allowed the whole audience to perceive the 
possibility of a measurement paradigm with equally validity 
for the hard sciences and psychology, education and 
medicine.  
 
Luigi Tesio, the third and last speaker, focused on the very 
practical uses of the Rasch model in Rehabilitation 
Medicine. He presented examples of variables he had 
constructed through Rasch modeling, and their applications 
to the management of rehabilitation units.  
 
Rasch modeling was not unknown in Italy; but, it was 
generally felt that this Conference helped bridge the gaps 
between different users and opened the door for new ones.  

Luigi Tesio, M.D. 

http://www.fsm.it
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Immediate Raw Score to Logit Conversion 
A supposed flaw in the Rasch model can be used to great 
advantage. Bruce Thompson informs us that Fan (1998) and 
MacDonald and Paunonen (2002) support his perception 
that the correlation between Rasch measures and raw scores 
is always .97 �±.02, i.e., is effectively linear. Malec et al. 
(2000) report a correlation of .98 for their clinical data. If 
this also holds true for your data then you can immediately 
convert raw scores to logits! 
 
What conditions must hold for this hold true? 
(a) The raw scores are all be on the same set of items. 
(b) The proportion of very high and very low scores is low. 
 
Then we have these convenient relationships. For each person 
n and item i of a test of length L, there is an observation Xni. 
Its Rasch model expectation is Eni, and the modeled variance 
of the observation around its expectation is Qni (see Wright 
and Masters, 1982, p. 100). Thus, person n's raw score, Rn , 
and raw score “error” variance, Vn , are given by: 

 
An approximate conversion factor between raw scores and 
logits for person n of ability Bn , at the center of the test 
characteristic curve is the slope of the curve: 1/Vn . 
 
Suppose we know the observed standard deviation, S, of the 
raw scores of a sample on a test and the reliability estimate 
(KR-20, Cronbach Alpha) of the test for the same sample, R. 
Then, from the definition of Reliability as “True Variance” / 
“Observed Variance”, raw score error variance = S2(1-R). So 
that the raw-score-to-Rasch-measure conversion factor is 
1/(S2(1-R)) . 
 
It is conventional to set the origin of the logit scale in the 
center of the test, i.e., where the raw score is about 50%. This 
gives the convenient raw score-to-measure conversion: 
Bn = (Rn – (Maximum score + Minimum score)/2 ) / S2(1-R) 

And the standard error of Bn is 1/�Vn = 1/(S ��(1-R)) logits. 
 
Applying this to the Wright & Masters (1982) “Liking for 
Science” data: Raw score S.D. = 8.6, Reliability = .87, 
minimum score = 0, maximum score = 50. Measure for raw 
score of 20 = -0.52, for 30 = 0.52, with S.E. ±.32. Winsteps 
says –0.55, 0.61 with S.E. ± .34. So that the results are 
statistically equivalent. 

John M. Linacre 
 
Fan, X. (1998) Item Response Theory and classical test 
theory: An empirical comparison of their item/person 
statistics. Educational and Psychological Measurement, 58, 
357-381. 
 
MacDonald, P., & Paunonen, S.V. (2002) A Monte Carlo 
comparison of item and person statistics based on item 

response theory versus classical test theory. Educational and 
Psychological Measurement, 62. 
 
Malec J. F., Moessner, A. M., Kragness, M., and Lezak, M.D. 
(2000) Refining a measure of brain injury sequelae to predict 
postacute rehabilitation outcome: rating scale analysis of the 
Mayo-Portland Adaptability Inventory (MPAI). Journal of 
Head Trauma Rehabilitation, 15 (1), 670-682. 

 

Journal of Applied Measurement 
Volume 3, Number 3. Autumn 2002 

 
Test Scores, Measurement, and the Use of Analysis of 
Variance: An Historical Overview. Joseph Romanoski 
and Graham Douglas 
 
Using Rasch Measurement to Investigate the Cross-
form Equivalence and Clinical Utility of Spanish and 
English Versions of a Diabetes Questionnaire: A Pilot 
Study. Ben Gerber, Everett V. Smith, Jr., Mariela 
Girotti, Lourdes Pelaez, Kimberly Lawless, Louanne 
Smolin, Irwin Brodsky, and Arnold Eiser 
 
Moving the Cut Score on Rasch Scored Tests. G. 
Edward Miller and S. Natasha Beretvas 
 
Examining Item Difficulty and Response Time on 
Perceptual Ability Test Items. Chien-Lin Yang, Thomas 
R. O’Neill, and Gene A. Kramer 
 
When Raters Disagree, Then What: Examining a 
Third-rating Discrepancy Resolution Procedure and Its 
Utility for Identifying Unusual Patterns of Rating. 
Carol M. Myford and Edward V. Wolfe 
 
Understanding Rasch Measurement: Understanding 
Resistance to the Data-model Relationship in Rasch’s 
Paradigm: A Reflection for the Next Generation. David 
Andrich 
 
For subscriptions, submissions, back-issues and 
instructors' sample copies, contact: 
 Richard M. Smith, Editor 
 Journal of Applied Measurement 
 P.O. Box 15171, Sacramento, CA 95851 
 916-286-8804, rsmith.arm@att.net 
 http://home.att.net/~rsmith.arm 
 
Congratulations to George Karabatsos, author of 
“The Rasch model, additive conjoint measurement, 
and new models of probabilistic measurement 
theory.” Journal of Applied Measurement, 2001, 2, 4, 
389-423, for winning the 2002 New Investigator 
Award of the Society for Mathematical Psychology.  
 

http://home.att.net/~rsmith.arm
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What do Infit and Outfit Mean-Square and Standardized mean?
These are all “fit” statistics. In a Rasch context they 
indicate how accurately or predictably data fit the model. 
 
Infit means inlier-sensitive or information-weighted fit. 
This is more sensitive to the pattern of responses to items 
targeted on the person, and vice-versa. For example, infit 
reports overfit for Guttman patterns, underfit for alternative 
curricula or idiosyncratic clinical groups. These patterns 
can be hard to diagnose and remedy. 
 
Outfit means outlier-sensitive fit. This is more sensitive to 
responses to items with difficulty far from a person, and 
vice-versa. For example, outfit reports overfit for imputed 
responses, underfit for lucky guesses and careless mistakes. 
These are usually easy to diagnose and remedy. 
 
Mean-square fit statistics show the size of the randomness, 
i.e., the amount of distortion of the measurement system. 
1.0 is their expected values. Values less than 1.0 indicate 
observations are too predictable (redundancy, data overfit 
the model). Values greater than 1.0 indicate unpredictability 
(unmodeled noise, data underfit the model). Statistically, 
mean-squares are chi-square statistics divided by their 
degrees of freedom. Mean-squares are always positive. 
 
In general, mean-squares near 1.0 indicate little distortion 
of the measurement system, regardless of the standardized 
value. Evaluate mean-squares high above 1.0 before mean-
squares much below 1.0, because the average mean-square 
is usually forced to be near 1.0. 
 
Outfit problems are less of a threat to measurement than 
Infit ones, but are easier to manage. To evaluate the impact 
of any misfit, replace suspect responses with missing values 
and examine the resultant changes to the measures. 
 
Standardized fit statistics (Zstd in some computer output) 
are t-tests of the hypothesis “Do the data fit the model 
(perfectly)?” These are reported as z-scores, i.e., unit 
normal deviates. They show the improbability of the data, 
i.e., its significance, if the data actually did fit the model. 
0.0 are their expected values. Less than 0.0 indicates too 
predictable. More than 0.0 indicates lack of predictability. 
Standardized values are positive and negative. 
 
Standardized fit statistics are usually obtained by 
converting the mean-square statistics to the normally-
distributed z-standardized ones using the Wilson-Hilferty 
cube root transformation. 
 
Anchored runs: 
Anchor values may not exactly accord with the current data. 
To the extent that they don't, fit statistics can be misleading. 
Anchor values that are too central for the current data tend 
to make the data appear to fit too well. Anchor values that 

are too dispersed for the current data tend to make the data 
appear noisy. 

John M. Linacre 
 
Mean-square 

Value Implication for Measurement 

> 2.0 
Distorts or degrades the measurement 
system. May be caused by only one or 
two observations. 

1.5 - 2.0 Unproductive for construction of 
measurement, but not degrading. 

0.5 - 1.5 Productive for measurement. 

< 0.5 

Less productive for measurement, but 
not degrading. May produce 
misleadingly high reliability and 
separation coefficients. 

 
 
Standardized 

Value Implication for Measurement 

� 3 

Data very unexpected if they fit the 
model (perfectly), so they probably do 
not. But, with large sample size, 
substantive misfit may be small. 

2 Data noticeably unpredictable. 
-1.9 – 1.9 Data have reasonable predictability. 

� -2 
Data are too predictable. Other 
“dimensions” may be constraining the 
response patterns. 

April 2003, Chicago 
 
April 19-20, Saturday-Sunday 

An Introduction To Rasch Measurement: 
Theory And Applications. 
At the University of Illinois at Chicago. The 
workshop will be conducted by Dr. Everett V. 
Smith Jr. and Richard M. Smith. 312/996-5630 
evsmith@uic.edu 

 
April 21-25, Monday-Friday 

AERA Annual Meeting. www.aera.net 
 
April 26-27, Saturday-Sunday 

Ben Wright Testimonial, Rehabilitation Institute 
of Chicago. 

 
April 28-29, Monday-Tuesday 

Facets Workshop, CORE, Evanston 
www.winsteps.com/seminar.htm 
 

April 30-May 1, Monday-Tuesday 
Winsteps Workshop, CORE, Evanston 
www.winsteps.com/seminar.htm 

http://www.aera.net
http://www.winsteps.com/seminar.htm
http://www.winsteps.com/seminar.htm
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The Standardization of Mean-Squares
The reason for standardizing the infit and outfit mean 
square statistics is to allow their statistical significance, or 
p-values, to be more conveniently represented. A familiar 
scale to use for this purpose is the Z-scale, or standard 
normal scale. Most of us are familiar enough with this scale 
that we don’t even need to look up the p-value of 1.96. And 
we know that a Z-score over 2.0 is “statistically 
significant.” In contrast, one does not immediately know 
the statistical significance of variables from other 
commonly-used reference distributions, such as the chi-
square distribution. The distribution changes with its 
degrees of freedom! 
 
A general formula for converting a variable, X, to the 
standard normal variate, Z, is:  

x

xX
XZ

σ
µ−=)(    (1) 

Now one may be certain that Z(X) has a mean of 0 and a 
variance of 1, but unless X is normally distributed to begin 
with, the p-values of Z(X) in a standard normal distribution 
do not necessarily agree with the p-values of X in its own 
distribution. For instance, a “normally distributed” variable 
has no skew, but chi-square distributions are skewed. 
 
Wilson & Hilferty (1931) found a way to transform a chi-
square variable to the Z-scale so that their p-values closely 
approximated. Since chi-square distributions are skewed, 
the transformation has an extra layer of complexity. The 
first step in the transformation is to transform the chi-square 
statistic to a more normally-distributed variable. They 
showed that the pth root of a chi-square variable divided by 
its degrees of freedom, n, is approximately normally 
distributed and that  
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Wilson & Hilferty chose p=3 (the cube root) for their 
transformation. The second step in the transformation is to 
substitute the results of Equations (2) through (4) into 
Equation (1). The complete transformation in terms of a 
chi-square variable, Y, with degrees of freedom, n, is:  
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 (5) 

 
Notice that Equation (5) has the basic form of a normalizing 
transformation, but is actually a normalizing transformation 
of a transformation! The p-values of W(Y) are very close to 
those of a standard normal variable, as desired. That is, if Z 
is a standard normal variable, P(Z < W(y)) ≈ P(Y < y). So 
W(Y) approximates a t statistic. 
 
The expectation of a chi-square variable, Y, is its degrees of 
freedom n. So the expectation of Y/n is 1. Let’s call this vi. 
The model variance of Y is 2n. So the variance of Y/n is 
2/n, let’s call this qi

2. Substituting in (5) and simplifying, 
we can see that (5) parallels the formula for the 
standardized weighted mean square at the bottom of Table 
5.4a in Rating Scale Analysis (Wright & Masters, 1982, p. 
100): 
 

3/)/3)(1( 3/1
iiii qqvt +−= .  (6) 

 
In RSA, the residuals comprising the vi have been 
weighted, embodying an unstated assumption that the 
distributional characteristics of weighted and unweighted 
mean-squares are the same. The unweighted form, which 
matches (5) exactly, substitutes ui for vi and the unweighted 
mean-square variance for the weighted one. Since the actual 
degrees of freedom for residual chi-squares are difficult to 
compute, RSA estimates them from the model distributions 
of the observations. 

Matthew Schulz 
 
Wilson, E. B., & Hilferty, M. M. (1931). The distribution of 
chi-square. Proceedings of the National Academy of 
Sciences of the United States of America, 17, 684-688. 

Midwestern Objective Measurement 
Seminar 

The next meeting of the Midwestern Objective 
Measurement Seminar (MOMS) will be held on 
Friday, December 13, 2002, 9:00 a.m.- 4:00 p.m., at 
the University of Illinois at Chicago, 1040 West 
Harrison Street, Chicago, in the ECSW building, 
Room 3427 (third floor). It will be jointly sponsored by 
the University of Illinois at Chicago (UIC) and the 
Institute for Objective Measurement, Inc. (IOM). Dr. 
Everett Smith will serve as host. There is no registration 
fee. 
 
Lunch: 12:00 noon – 1:00 p.m. Participants are 
encouraged to bring their own lunches or eat at 
neighboring Greek, Italian, and American-style 
restaurants  
 
Parking structure is between ECSW and Racine Street 
on the north side of Harrison. Cost is $7.50 for the day. 
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Facets, Factors, Elements and Levels
Early test analysis was based on a simple rectangular 
conception: people encounter items. This could be termed a 
“two-facet” situation, loosely borrowing a term from 
Guttman’s (1959) “Facet Theory”. From a Rasch 
perspective, the person’s ability, competence, motivation, 
etc., interacts with the item’s difficulty, easiness, challenge, 
etc., to produce the observed outcome. In order to 
generalize, the individual persons and items are here termed 
“elements” of the “person” and “item” facets. 
 
Paired comparisons, such as a Chess Tournament or a 
Football League, are one-facet situations. The ability of one 
player interacts directly with the ability of another to 
produce the outcome. The one facet is “players”, and each 
of its elements is a player. This can be extended easily to a 
non-rectangular two-facet design in order to estimate the 
advantage of playing first, e.g., playing the white pieces in 
Chess. The Rasch model then becomes: 

 
where player n of ability Bn plays the white pieces against 
player m of ability Bm, and Aw is the advantage of playing 
white. 
 
A three-facet situation occurs when a person encountering 
an item is rated by a judge. The person’s ability interacting 
with the item’s difficulty is rated by a judge with a degree 
of leniency or severity. A rating in a high category of a 
rating scale could equally well result from high ability, low 
difficulty, or high leniency.  
 
Four-facet situations occur when a person performing a task 
is rated on items of performance by a judge. For instance, in 
Occupational Therapy, the person is a patient. The rater is a 
therapist. The task is “make a sandwich”. The item is “find 
materials”. A typical Rasch model for a four-facet situation 
is: 

 
where Di is the difficulty of item i, and Fik specifies that 
each item i has its own rating scale structure, i.e., the 
“partial credit” model. 
 
And so on, for more facets. In these models, no one facet is 
treated any differently from the others. This is the 
conceptualization for “Many-facet Rasch Measurement” 
(Linacre, 1989) and the Facets computer program. 
 
Of course, if all judges are equally severe, then all judge 
measures will be the same, and they can be omitted from 
the measurement model without changing the estimates for 
the other facets. But the inclusion of “dummy” facets, such 
as equal-severity judges, or gender, age, item type, etc., is 
often advantageous because their element-level fit statistics 
are informative. 

Multi-facet data can be conceptualized in other ways. In 
Generalizability theory, one facet is called the “object of 
measurement”. All other facets are called “facets”, and are 
regarded as sources of unwanted variance. Thus, in 
G-theory, a rectangular data set is a “one-facet design”. 
 
In Gerhard Fischer’s Linear Logistic Test Model (LLTM), 
all non-person facets are conceptualized as contributing to 
item difficulty. So, the dichotomous LLTM model for a 
four-facet situation (Fischer, 1995) is: 

 
where p is the total count of all item, task and judge 
elements, and wil identifies which item, task and judge 
elements interact with person n to produce the current 
observation. The normalizing constraints are indicated by 
{c}. In this model, the components of difficulty are termed 
“factors” instead of “elements”, so the model is said to 
estimate p factors rather than 4 facets. This is because the 
factors were originally conceptualized as internal 
components of item design, rather than external elements of 
item administration. 
 
David Andrich’s Rasch Unidimensional Measurement 
Models (RUMM) takes a fourth approach. Here the rater 
etc. facets are termed “factors” when they are modeled 
within the person or item facets, and the elements within 
the factors are termed “levels”. Our four-facet model is 
expressed as a two-facet person-item model, with the item 
facet defined to encompass three factors. The “rating scale” 
version is: 

 
where Di is an average of all �mij for item i, Am is an 
average of all �mij for task m, etc.  
 
This approach is particularly convenient because it can be 
applied to the output of any two-facet estimation program, 
by hand or with a spreadsheet program. Missing �mij may 
need to be imputed. With a fully-crossed design, a robust 
averaging method is standard-error weighting (RMT 8:3 p. 
376). With some extra effort, element-level quality-control 
fit statistics can also be computed. 

John M. Linacre 
 
Fischer, G.H., & Molenaar, I.W. (Eds.) (1995) Rasch 
Models: Foundations, Recent Developments and 
Applications. New York: Springer. 
 
Guttman, L. (1959) A structural theory for intergroup 
beliefs and action. American Sociological Review, 24, 318-
328. 
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Random Effects Rasch Model
Georg Rasch was concerned to construct measurement 
models with “parameters that are specific to the 
individuals” (1960, p. 9). An early extension of the Rasch 
model specified that the “individuals” were to be treated as 
random variables drawn from some distribution. This is 
now done routinely using the PROX algorithm and 
Marginal Maximum Likelihood Estimation. 
 
Lalitha Sanathanan in “Some Properties of the Logistic 
Model for Dichotomous Response” (JASA, 69, 347, 744-
749, 1974!) attempts this, but immediately encounters a 
major hurdle, the multiplicative form of the Rasch model 
then in common use. After Herculaean effort, she derives a 
simple approximation, but is forced to present it in additive 
form in order to make it tractable. Rewritten, the 
approximation is: 

 
where N is the sample size, Si is the number of correct 
answers to item i, and Di is the difficulty of item i. � and � 
are sample dependent, but how they relate to the mean and 
standard deviation of the distribution is omitted from the 
paper. In fact, this formulation is equivalent to the PROX 
equation for a sample distributed N(	,
), when  

 
and 

µβµβµβµβαααα ====  
Sanathanan realizes that she has “shown how the 
parameters in the model can be calculated in a rough ready 
manner” (p. 749), but the utility of her insight was lost due 
to her abstruse math. 
 

 
Sanathanan’s plot of expected score against item 
difficulty for different sample distributions. 

Australia, 2004 
January 5-16. Rasch Measurement Introductory and 

Intermediate Courses, Perth, Western 
Australia. chillino@murdoch.edu.au  

 
January 19. RUMM2010 one-day workshop. Perth, 

Western Australia. chillino@murdoch.edu.au  
 
January 20-22. The 2nd International Conference on 

Measurement in Health, Education, 
Psychology and Marketing: Developments 
with Rasch models. Perth, Western Australia. 
chillino@murdoch.edu.au  

 
June 28 – July 3. Mon-.Sat. IOMW at Quest 

Marlin Cove Resort, Trinity Beach, Cairns, 
Queensland. www.soe.jcu.edu.au/iomw/ 

 
June 28-29, Mon.-Tues. Pre-conference workshops 

(software etc.) 
 
June 30-July 2. Wed.-Friday. IOMW itself, incl. one 

'Teachers' Day' of presentations that would 
appeal classroom practitioners. And other 
specialist themes. 

 
July 3. Sat. Post-conference group visits, e.g. to Great 

Barrier Reef, to rainforest, whale-watching. 

Journal of Applied Measurement 
Volume 3, Number 4. Winter 2002 

 
A Multi-factor Rasch Scale for Artistic Judgment. 
Nikolaus Bezruczko 
 
Establishing Longitudinal Factorial Construct Validity 
of the Quality of School Life Scale for Secondary 
Schools. Magdalena Mo Ching Mok and Marcellin 
Flynn 
 
Rasch-transformed Raw Scores and Two-way 
ANOVA: A Simulation Analysis. Joseph Romanoski 
and Graham Douglas 
 
Development of Measurability and Importance Scales 
for the NATA Athletic Training Educational 
Competencies. Edward W. Wolfe and Sally Nogle 
 
Measuring Leader Perceptions of School Readiness 
for Reform: Use of an Iterative Model Combining 
Classical and Rasch Methods. Madhabi Chatterji 
 
Understanding Rasch Measurement: Construction of 
Measures from Many-facet Data. John M. Linacre 
 
Book Review - Applying the Rasch Model: 
Fundamental Measurement in the Human Sciences by 
Trevor G. Bond and Christine M. Fox. Edward W. 
Wolfe 

 
For subscriptions, etc., see Box on p. 877 

 

http://www.soe.jcu.edu.au/iomw/
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The Illusion of Measurement: Rasch versus 2-PL
Many researchers who are attempting to measure latent 
constructs appreciate the special properties of the Rasch 
model and view it as an ideal model, but, at the same time, 
they tend to complain about the “inflexibility” of the model 
when it comes to “explaining” data. The two-parameter 
logistic model is then seen as a possible resort. However, 
with discrimination varying from item to item, the very 
meaning of the construct changes from point to point on the 
dimension. In other words, measurement in its true sense 
has not been achieved. 
 
In the dichotomous Rasch model, for each item response 
only two parameters are relevant, the item location 
parameter � and the person location parameter � (using 
Rasch’s multiplicative notation). The probability of a 
correct response then is �/(�+�) (Rasch 1960/1980, p.107). 
As Georg Rasch points out, if we knew the exact item 
parameter and the probability of a correct response, the 
person location could be computed directly. Vice versa, if 
we knew the person parameter and the probability, we 
could compute the item location. Under the 2PL model, this 
is not possible without further information because there are 
infinitely many combination of item difficulty and 
discrimination which yield the same probability for a given 
person location.  
 
The plot shows the adjusted log-odds of success on five 2-
PL items for persons at five ability levels. The five ability 

levels are –2, -1, 0, 0.1, and 2 logits. The items have 
difficulty and (discrimination) of –2 (0.8), -1.0 (1.8), 0.0 
(0.4), 0.1 (1.5), and 2 (1.2). For each person-item 
encounter, the 2-PL probability of success is computed. 
This is converted into log-odds and adjusted for person 
ability. The plot thus shows the local Rasch difficulty of 
each item for each person. If the items were in accord with 
the Rasch model, this plot would collapse to an identity 
line. Since the 2-PL item characteristic curves intersect, 
there is a different “Rasch item difficulty” for each item for 
each level of person ability. In other words, the meaning of 
the construct defined by the item difficulty differs for each 
person location. Thus the apparent advantage of better 
describing the data set when using the 2PL, rather than a 
Rasch model, comes at the expense of a highly fuzzy 
definition of the latent continuum . “Measurement” 
becomes an illusion, because there is no precise definition 
of what is being measured. 
 
Thomas Salzberger 
Vienna University of Economics  
and Business Administration 
Austria 
 
Rasch, Georg (1960/1980). Probabilistic Models for Some 
Intelligence and Attainment Tests. Danish Institute for 
Educational Research & www.rasch.org/books.htm 

 
 

   Plot: Local item difficulty of 5 2PL items for 5 abilities. 

http://www.rasch.org/books.htm

