Residual Analysis with Missing Data

I was finally able to run a principle component analysis of Rasch residuals on a large dataset of about 4000 people and 457 items. However, the output look very strange. It produced 3 factors: factor 1 has explained 68.48 of 457 variance units, factor 2 has explained -56.11, and factor 3 has explained -107.27. I am not sure what is the main cause of the negative (and huge) eigenvalues. The data have the weakness that nobody took every item. I also tried to factor analyze the original data with SPSS, but it stopped because there were not enough subjects to analyze. What do you recommend?

Surintorn Suanthong

Missing data always pose a problem in factor analysis because the basis of the methodology is the decomposition of correlations or covariances. There are two main approaches to the problem. Listwise deletion removes from the data every case with a missing data value. A drawback, apparently observed in your SPSS run, is that a large proportion of the cases may be omitted, skewing the results or preventing successful completion of the analysis.

Pairwise deletion skips over individual computations involving missing values. So correlations between pairs of items are computed based on all cases for which data is present for both items. Pairwise deletion can lead to contradictory results:

Item Responses Pairwise Correlation
A
B
C
01.01...
01....01
...01.10
AB 1
AC 1
BC -1

Inconsistent matrices of correlations produce negative eigenvalues.

In the analysis of Rasch residuals, there is a useful solution. For each missing residual, impute its expected value of zero. This will force the correlations to be consistent. The zero residuals will dampen the size of factors in the residuals, but will have little effect on the factor structure.

From a small data set, I randomly eliminated 54% of the responses of each respondent. In the residuals from the original data, factors 1 and 2 had eigenvalues of 3.0 and 2.4. Listwise deletion would have eliminated the entire data set. Using pairwise deletion, the eigenvalues were -6.0 and -11.1 with a meaningless factor structure. After imputing zero residuals, the eigenvalues climbed back to 2.0 and 1.5, with a weaker, but still recognizable, factor structure.

John Michael Linacre

Residual Analysis with Missing Data Linacre, J.M. … Rasch Measurement Transactions, 1999, 13:1 p. 679




Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt131b.htm

Website: www.rasch.org/rmt/contents.htm