Explaining Maximum Likelihood Estimation

Here are two techniques that I've found particularly useful in teaching about maximum likelihood estimation.

(1) What is the difference between "probability theory" and "statistical inference"?

Most students have been exposed to the binomial distribution, and those who have not quickly get the general idea when asked to consider flipping a possibly biased coin some fixed number of times, say 5. I display a table such as that below, in which the binomial distribution is used to calculate the probability of zero through five heads in 5 tosses of a coin for 5 possible values of a bias parameter:

Bias of coin towards Heads
Heads .1 .3 .5 .7 .9
0
1
2
3
4
5
.59
.33
.07
.01
.00
.00
.17
.36
.31
.13
.03
.00
.03
.16
.31
.31
.16
.03
.00
.03
.13
.31
.36
.17
.00
.00
.01
.07
.33
.59

I tell the class that if we are dealing with probability theory, then we look at columns of the table. For example, if we have a fair coin, we look at the column labelled ".5". But as statisticians, we deal with situations in which we have already performed an experiment, and want to make an inference about what state of nature probably produced the outcome. Therefore, statisticians look at the rows of the table.

We identify the row corresponding to the outcome that was observed. If we observe four heads, then the numbers in that row of the table show the likelihood function, calculated for these five possible values of the true underlying proportion. Since any value of the proportion between zero and one is possible, we must imagine a similar table with more and more values; or in the limit, a graph showing the shape of the function.

Since the numbers in a row do not add up to one (or, considering the true case of infinite values, do not integrate to one), these are not probabilities; that is why the different name "likelihood" was used by Ronald Fisher to describe these numbers. We can see that higher values of the likelihood correspond to underlying proportions that are more likely to produce the observed outcome. We naturally define the maximum likelihood estimate to be the number for which this likelihood is the largest. Since the biggest likelihood with 4 heads in this table is associated a bias of .7, then the maximum likelihood estimate is that the coin bias is .7.

(2) Maximizing a function is like climbing a hill with a bucket on your head.

There are frequently many parameters to be estimated at once in a general function. We must discover the estimates for all the parameters that simultaneously maximize the likelihood. A frequently-used analogy for finding maxima of general functions is climbing a hill.

Students who are told this don't see what is so difficult about this; they think that all you have to do is look at the hill, and see where the highest point is. What they don't understand is that in maximizing a general function, you don't usually get to see the whole hill at once, but only a small part of it. So I describe the process as one of being blindfolded and led to some point, and then having the blindfold removed while a bucket is placed over your head. The bucket allows you to see a small area around you, but you can't see the whole landscape. Based on what you see "nearby" by looking down, you have to decide what direction to move in, and how far. You are then transported to that spot (blindfolded again), and are then allowed to repeat the process. You must decide when you have reached the top of the hill.

If students can visualize the process this way, they can see more of the complexities involved, including possible multiple hill tops, some of which are higher than others.

David Rindskopf
Educational Psychology
City University of New York Graduate School

Explaining maximum likelihood estimation.Rindskopf D. … Rasch Measurement Transactions, 1998, 12:3 p. 645.




Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt1237.htm

Website: www.rasch.org/rmt/contents.htm