Diagnosing Measure Covariance

Careful measurement is aimed at ascertaining the extent or quantity of one particular attribute of something. In practice, this ideal of unidimensional measurement is never achieved. It proves impossible to isolate entirely one attribute from another, e.g., length of steel rods and temperature, or time and very high velocities. In the social sciences, measurement of unintentional combinations of attributes is frequently encountered. This can mislead the unwary into supposing that two different things are the same.

Figure 1 illustrates a situation in which Measure 1 is intended to quantify one attribute and Measure 2 another. Henry& Alred (1996) encountered similar situations during their investigation of Depression and Anxiety. Measure 1 was intended to measure anxiety, but included some depression-sensitive items. Measure 2 was intended to measure depression, but included some anxiety-influenced items. Thus Measure 1 covaried with Measure 2 because both quantify combinations of the two attributes. Usually combinations of two different attributes are noticed because item misfit statistics can classify the items according to their predominant attribute. Also, calibrating the items with samples with different proportions of the two attributes causes obvious shifts in the calibrations.

Suppose, however, that the two attributes have been clearly defined and each measure quantifies only its intended attribute. What if unidimensionality has been achieved, and yet the now clearly unidimensional measures still covary? Can this happen? Unidimensionality does not mean "one dimension totally unlike any other". Rather, unidimensionality means one dimension comprising more or less of the same one quality, however it is defined. This quality may be closely related to other qualities. Height and weight are usually considered distinct qualities, and measured as such, but tall adults are generally heavier than short adults, so that measures of height and weight will covary. Thus measures may covary because the underlying qualities being measured overlap.

Look again at depression and anxiety. These are commonly observed to occur together and may well be manifestations of some more basic psychological state. Their relationship may be that depicted in Figure 2. Measure A focuses sharply on Anxiety, and Measure D focuses sharply on Depression. Both measures are unidimensional, but because the circumstances causing manifestation of the two attributes overlap, the measures covary.

When measures are discovered to covary across attributes, the test developer faces the challenge of constructing items that probe the desired attribute at a more demanding level than its companion attribute. For arithmetic word problems, the arithmetic task must be markedly more demanding than the reading comprehension task. But this requires care. Give arithmetic word problems written in English to a French speaker, and the test no longer measures arithmetic, but rather ESL proficiency.

Based on Henry D. & Alred K. (1996) Measuring Depression in Children with Achenbach's Checklist. MOMS, December 1996.


Diagnosing Measure Covariance. Henry D., Alred K. … Rasch Measurement Transactions, 1997, 11:1 p. 556



Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt111r.htm

Website: www.rasch.org/rmt/contents.htm