Investigating Judge Local Independence

Local independence is required of data that are to support Rasch measures. Local independence exists when the Rasch measures explain all systematic differences among the data, so that there is independence among the residual differences between the observed data and those expected from the Rasch measures. When judges award ratings, it may not be obvious whether their task is to act as independent experts or merely to code data. An investigation into local independence can help to clarify this.

"Analysis of the fit of data to [local independence] is the statistical device by which data are evaluated for their measurement potential - for their measurement validity" [Wright 1991 RMT 5:3 p.159]. Yet typical chi-square fit statistics, such as INFIT and OUTFIT, detect lack of local independence only indirectly. If the same item is repeated twice in an MCQ test, then each item predicts the responses to the other too well. This means that the residuals for both items are smaller than expected, leading to smaller than expected chi-square statistics. But no direct indication is given that the two small chi-squares are caused by an interaction between these two particular items. An investigation of response covariance would immediately flag the interdependency of the two items.

Can covariance investigation also detect a lack of judge independence? A carefully conducted study of judge behavior was Rasch analyzed. Examinees performed several writing tasks. Each examinee-task performance was rated separately by each judge.

Initial analysis indicated that the spread of judge severities was about one-third that of examinee abilities. Certainly too big to be ignored. The judge mean-square chi-square fit statistics for these well-trained judges ranged from 0.5 to 1.4 - not unusual for this type of rating situation. Even though these judges seemed to be exercising their expertise independently enough, judge rating covariances were investigated.

The actual judge rating covariances were calculated from the observed ratings. Then a simulation of independent ratings was generated from the Rasch estimates of judge severity, examinee ability, writing task difficulty, and rating scale structure. The judge covariances for the simulated data were also estimated. Comparison of the covariances is intriguing.

The judge plot shows the frequency of judge covariance size for the observed and simulated data sets. The covariances for the simulated, locally independent data are centered on 0, and rarely get above 0.5 score points. But none of the observed covariances are below 0, and one is just above 1 score point. The largest covariance is between two judges identified as most unpredictable (noisy) by the chi-square statistics. The covariances of the other judges with the most predictable judge are generally about 0.25 score points.

As a check on the study, the covariance of examinee responses was also computed. These are shown in the examinee plot. They raise no special concerns because their center is close to 0, with most covariances less than 0.5 score-points.

Positive judge covariances imply that when one judge gives a higher than expected rating to a particular examinee on a particular task, then the others also tend to, or when one gives a lower than expected rating, then so do the others. These tendencies are apart from any systematic rating patterns across examinees or tasks, which would raise or lower the corresponding measures. It seems there is something in particular examinee-task performances that prompts the judges, en masse, to raise or lower their severity levels. Perhaps this indicates that the judges are not exhibiting the local independence the model specifies, or perhaps it indicates local strength or weakness by subsets of examinees on tasks.

What are the measurement implications of judge over-conformity? Lack of local independence, just like other forms of misfit, degrades the measurement process and increases standard errors. The judges are acting like bathroom scales with the 0 calibrated at different weights. There must still be an adjustment for their relative severities. On the other hand, their ratings are not fully independent, so that each extra rating does not contain as much new statistical information as previous ones. This means that the precision of measurement is not as great as the number of ratings suggests. Consequently, model-based standard errors are too small.

John Michael Linacre


Investigating Judge Local Independence. Linacre J. M. … Rasch Measurement Transactions, 1997, 11:1 p. 546-7.



Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt111h.htm

Website: www.rasch.org/rmt/contents.htm