Score Inflation due to Examinee Control of a Stopping Rule

Examinees like methods that improve their results without improving their performance. I tried one method myself on a recent administration of the Graduate Record Examination (GRE).

The GRE was computer-administered with the instruction that a minimum number of items must be answered. After that, the examinee could stop answering items at any point and let the time allotted for the examination run out. I tried a strategy identified by Slater and Schaeffer (1996):
After the minimum number of items have been answered, continue to answer items until you are fairly certain you will get the item on your computer screen wrong. Do not answer that item and let time expire.

This strategy is intended to increase the number of correct answers while holding the number of incorrect answers constant. Since an examinee's estimated measure is Reported measure = loge(Right/Wrong) + Average Item Difficulty, increasing the number of right answers increases the measure. Avoiding wrong answers prevents the measure from decreasing. This is called the Numerator Inflation Strategy (NIS). Does it work?

I took real response strings from a fixed-length 90 item CAT administration and implemented NIS perfectly with different minimum item response requirements. I truncated each response string just before the first wrong answer after the minimum number of responses. This produced two measures, one for the truncated string and one for the whole string. The Figure summarizes the results.

In the Figure, three representative performance levels are shown. Measures for those levels are at 0, 1 and 2 logits. The slightly sloped lines are average NIS measures for each of the three levels. In this example, when the minimum number of items required is very low (right side of Figure), and you know what you are doing, then you can, on average, raise your reported measure by about .1 logits above your overall measure. But when the minimum number of items is high (left side of Figure), then, on average, you will lower your reported measure by about .1 logits. The reason for these results is that avoiding a wrong answer on a short test raises your measure by minimizing the denominator of wrong answers. But on a long test, stopping just before the first wrong answer penalizes you because you no longer have the opportunity to improve your measure with a subsequent run of right answers.

In my case, employing the NIS strategy probably did me no good and may even have lowered my reported measure. But, for the marginally low performer willing to gamble, about 1% of the time the NIS strategy can raise your reported measure .2 logits or more - perhaps just enough to lift you above some crucial criterion value. I understand that, in light of this, GRE procedures have been modified.

Thomas O'Neill American Society of Clinical Pathologists 2100 W. Harrison St. Chicago IL 60612-3798

Slater SC, Schaeffer GA (1996) Computing scores for incomplete GRE general computer adaptive tests. Paper presented at NCME, New York.


Score inflation due to examinee control of a stopping rule. O'Neill T. … Rasch Measurement Transactions, 1996, 10:3 p. 522.



Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn. George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

Rasch Measurement Transactions welcomes your comments:

Your email address (if you want us to reply):

If Rasch.org does not reply, please post your message on the Rasch Forum
 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt103m.htm

Website: www.rasch.org/rmt/contents.htm