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Latent trait models for educational measurement are 

conceptual inventions that claim to specify what happens 

when a person takes a test item. To be worth its salt, a 

model must define the supposed causes of the observed response, 

direct how to estimate these causes and determine how well 

the supposition fits the situation. 

Of all the models proposed for item calibration and 

person measurement, the Rasch model is the easiest to under-

stand and the easiest to use. Its hypothesized causes are 

one ability parameter for each person and one difficulty 

parameter for each item. These parameters represent the 

relative positions of persons and items on the single latent 

variable which they share. They determine the probability of 

any particular person succeeding on any particular item. 

HOW THE RASCH MODEL WORKS  

Understanding the Model  

The way these parameters, call them $ v  for the ability 

of person v and S i  for the difficulty of item i, are combined 

by the Rasch model is through their difference v ). 

This difference governs the probability of what is supposed 

to happen when person v pits his ability against the difficulty 

of item i. Since this difference can range from minus infinity 

to plus infinity, but the probability must stay between zero 

and one, the difference is applied as an exponent in 
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vi )  
e 	 and this exponential expression is brought between 

ca -5) 	($-5) 
17 	 17 zero and one by the ratio e 	/[1 + e 	] which is 

the Rasch probability for a right answer (Rasch 1960, 62-126; 

1966a; 1966b; Wright, 1968). Figure 1 is a picture of the 

way this probability P vi  depends on the difference between 

person ability $ v  and item difficulty S i . Table 1 gives 

examples of this relationship. 

(Figure 1 and Table 1) 

When person v is smarter than item i is difficult, 

then (3
v 

is more than S , , their difference is positive and the _- 1 

person's probability of success on item i is greater than one 

half. The more the person's ability surpasses the item's 

difficulty, the greater this positive difference and the 

nearer his probability of success comes to one. But when 

the item is too hard for the person, then 13
v 

is less than S i , 

their difference is negative and the person's probability of 

success is less than one half. The more the item overwhelms 

the person, the greater this negative difference becomes and 

the nearer his probability of success comes to zero. 

When we vary person abilities for an item, we have 

an item characteristic curve, i.e., a picture of the way the 

probability for success on that item changes as persons change 

in ability. When we vary item difficulties for a person we 
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Figure 1 

The Rasch Model Characteristic Curve 



Table 1 

Person Ability and Item Difficulty in Logits 

and the Rasch Probability of a Right Answer 

Person 	Item 	 Right Answer 	Information 
Ability 	Difficulty 	Difference 	Odds 	Probability in a Response 

e °-6)  13, 	 (5 	 $ - 6 	 P 	 I  

5 	 0 	" 	 5 	 148. 	 .99 	 .01 
4 	 0 	 4 	 54.6 	 .98 	 .02 
3 	 0 	 3 	 20.1 	 .95 	 .05 
2 	 0 	 2 	 7.39 	 .88 	 .11 
1 	 0 	 1 	 2.72 	 .73 	 .20 

0 	 0 	 0 	 1.00 	 .50 	 .25 

0 	 1 	 -1 	 .368 	.27 	 .20 
0 	 2 	 -2 	 .135 	.12 	 .11 
0 	 3 	 -3 	 .050 	.05 	 .05 
0 	 4 	 -4 	 .018 	.02 	 .02 
0 	 5 	 -5 	 .007 	.01 	 .01  

• 

P = e (8 -.(S) /(1 + e (8 	6)l. 

I = P(1 - P) 
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have a person characteristic curve, i.e., a picture of the 

way we expect him to perform on items of various difficulties. 

If we express the answer person v gives to item i as x vi = 1, 

for "right," and x
vi 

= 0, for "wrong," then the Rasch model 

for calibrating items and measuring persons becomes: 

x .($ -6) vi 	v i 	 (f3 v-6 i ) 
Pr{xvi I v , S i } = e 	 /[1 + e 	 • 	[1] 

The natural units defined by this expression are 

called "logits." A person's ability in logits is his natural 

log odds for succeeding on items of the kind chosen to define 

the scale "zero." An item's difficulty in logits is its 

natural log odds for eliciting failure from persons with 

"zero" ability. The first six rows of Table 1 give examples 

of person abilities in logits and their success probabilities 

when provoked by items of "zero" difficulty. The last six 

rows give examples of item difficulties in logits and the 

probabilities of success on them by persons with "zero" 

ability. This logit scale is not mandatory. We can add any 

constant to all abilities and difficulties without changing 

the difference (a 1, -(5 i ). Thus "zero" on the scale can be placed 

so that negative difficulties and abilities do not occur. We 

can also introduce any scaling factor we find convenient, 

including one which makes decimals unnecessary. 

The last column of Table 1 gives the relative 
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"information" I = P(1-P) available in a response observed 

at each (6 - 6). When item difficulty 6 is within a logit 

of person ability 6, then the information about either 6 

or 6 in one observation is greater than .20. But when item 

difficulty is more than two logits off target, then the 

information is less than .11 and for 16 - 61 > 3 less than 

.05. The implications for efficient calibration sampling 

and best test design are that responses in the 16 - 61 < 1 

region are worth' more than twice as much for calibrating items 

or measuring persons as those outside of 16 - 61 > 2 and more 

than four times as much as those outside of 16 - 61 > 3. 

Calibrating Items and Measuring Persons  

The Rasch model estimators for 6 and 6 are sufficient, 

consistent, efficient and unbiased (Rasch, 1968; Andersen, 

1970, 1973, 1977). Simple approximations for these estimators 

are accurate enough for all practical purposes (Wright and 

Douglas, 1977a, 1977b). Experience has shown the model use-

ful in a wide variety of situations (Connolly, A. J., Nachtman, 

W., and Pritchett, E. M., 1971; Woodcock, 1974; Willmott and 

Fowles, 1974; Rentz and Bashaw, 1975, 1977; Andrich, 1975; 

Mead, 1976). Technical details are described in Wright and 

Panchapakesan (1969), Wright and Douglas (1975, 1977a, 1977b), 

Wright and Mead (1978) and Wright and Stone (1978). 

Here is an approximation, called PROX, which works 
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quite well for typical distributions of items and persons. 

1. For a test of L' items given to a sample of N' persons; 

delete all items no one gets right and no one gets 

wrong and all persons with none right and none wrong 

until no such items or persons remain. 

For the L < L' items and N < N' persons remaining: 

2. Observe 	 S
i 

the number of persons who got 

item i right, for i=1 through L and 

n
r 

the number of persons who got r 

items right, for r=1 through L-1. 

3. Calculate 	x
i 
= Zn[(N-S

i
)/S] 	the log odds wrong 	[2] 

answers to item i, 
• L 

x. = Exi /L 
	 its mean over L items,[3] 

U = E(xi -x • )
2
/(L-1) 	its variance 	 [4] 

y = Zn[r/(L-r)] 	 the log odds right 	[5] 
answers on L items 

L-1 
y. = E n r 

 y 
r
/N 	 its mean over N 	[6] 

r 	 persons, 

L-I 
V = En r  (y r-y

. )
2
/(N-1) its variance. 	 [7] 

1/2 
(1 + V/2.
1  - UV/8

8
.
9
35) 

4. Let 	 Y - 	 an expansion factor 	[8] 
due to sample spread. 

1/2 

X 
(1 - UV/8.
1  + U/2.89

35 
 ) 

- 	 an expansion factor 	[9] 
due to test width 
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5. Then 	d, = Y(x.-x ) 	 the difficulty esti- [10] 1 
mated for item i, 

SE(d.) 	= Y[N/S
i (N-S )] 1/2 the standard error 	

[11] 
1 

of calibration, 

b
r 

= Xy
r 	 the ability implied [12] 

by score r, 

SE(b
r
) = X[L/r(L-r)] 1"2 	the standard error 	[13] 

of measurement. 

Suppose 448 persons took a 5-item test with the 

responses shown under S
i 

and n
r 
in Table 2. Calculation of 

U, V, X and Y produce the d i  and b r  listed. Since these data 

were generated by exposing random persons from an ability 

distribution with mean zero and standard deviation .5 to the 

item difficulties shown under &
i' 

the success of the cali- 

bration can be judged by comparing the estimated d i  with their 

generating S i . 

(Table 2) 

Evaluating Item and Person Fit  

The fit of any data to the Rasch model can and should 

be routinely evaluated by calculating how much is left over 

after the data has been used to estimate the item difficulties 

d i and the person abilities b
y 

= b r , where r is the test 

score of person v. This is done by using the Rasch model 

response expectation P
vi 

and variance P
vi  (1- 

 P vi ) to form 

2 
a squared standard residual z

vi 
= (x

vi 
- 

Pvi)
2
/Pvi(1  - P

vi
) 



Table 2 

An Example of Rasch Model Calibration 

	

Item 	S 	x. 	d 	SE(d.) 	S i i 	1 	i 	 1 

1 	321 	-0.93 	-0.99 	0.12 	-1.00 
2 	296 	-0.67 	-0.69 	0.11 	-0.50 
3 	233 	-0.08 	-0.01 	0.11 	-0.00 
4 	168 	0.51 	0.67 	0.11 	0.50 
5 	138 	0.81 	1.01 	0.12 	1.00  

	

N = 448 x = -0.07 U = 0.55 	X = 1.12 

	

Score 	nr 	Yr 	
br 	

SE(br ) 

1 	 63 	-1.39 	-1.56 	1.25 
2 	146 	-0.41 	-0.46 	1.02 
3 	155 	0.41 	0.46 	1.02 
4 	 84 	1.39 	1.56 	1.25  

	

N = 448 	y = 0.07 V = 0.74 	Y = 1.15 



-7- 

(b-d) 
v the particular values of which are e 	 for a wrong 

(d
i v 
-b) 

answer and e 	 for a right one. These squared resi- 

duals can be summed over persons or items to form approximate 

chi-squares for testing the fit of any particular item to 

any group of persons or of any individual person to any set 

of items. The average degrees of freedom of each residual 

is (L-1)(N-1)/LN. 

Even the residual for a single person-item encounter 

can suggest that the encounter may have departed from expec-

tation to an extent worth remarking and, perhaps, correcting 

for. When a person for whom (b-d) is greater than three 

nevertheless fails, then the probability of their wrong answer is 

less than 1/(1+e
3 ) = 1/21. If we consider such an outcome 

too improbable to swallow, then we will investigate to see 

if perhaps some unplanned influence has interfered with the 

application of this person's ability to that particular item. 

Was he distracted, out of practice, rushed, bored? Was the 

item biased against him? 

Similarly when a person for whom (d-b) is greater 

than three nevertheless succeeds, the probability is also less 

than 1/21 and we may wonder how he accomplished such an un-

likely success. Was he specially prepared for this item? 

Was he guessing or cheating? Was the item biased in his favor? 
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WHAT THE RASCH MODEL DOES  

Item Calibration Can Be Sample-Free  

When the Rasch model is used to govern measurement, 

then the unweighted sum of right answers given by persons 

taking an item can be used to estimate sample-free item 

calibrations. The traditional index of item difficulty, 

proportion right in some calibrating sample, varies with the 

sample's ability distribution, e.g., high for smart samples, 

low for dumb ones. To obtain a sample-free calibration we 

must adjust the sample-bound item score for the influence of 

sample ability. 

Item score depends on the number of persons N at-

tempting the item, their mean ability M, their ability 

variance V, and the difficulty di  of the item. The Rasch 

model combines these factors to approximate the item score 

[(M-di)/Y] r 	 [(M- di)/Yll S
i 

= Ne 	 /t1 + e 	 (14] 

where Y = (1 + V/2.89)
1/2 . When we solve this for 

d
i 
= M + Y Zn[N-S

i
)/S

i
], 	 [15] 

we see how the Rasch model adjusts sample-bound item scores 

for the influence of sample ability level and dispersion to 

produce sample-free item difficulties. 
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Item Validity Can be Evaluated  
by a Chi-Square Test of Item Fit  

The validity of any item with respect to any sample 

of persons and even to a particular person can be evaluated 

explicitly by fitting the Rasch model, calculating the dif-

ference between the observed data and the values expected by 

the model and examining these residuals. While a single im-

probable residual does not determine whether the trouble lies 

in the person or the item, when squared residuals are summed 

over persons for an item, the magnitude of their sum provides 

a chi-square test of the item's validity (Wright and Panchapakesan, 

1969; Wright, Mead, and Draba, 1976; Mead, 1976). 

If an item is thought to be biased with sex or culture, 

then its unsquared residuals, -e(b-d)/2  for a wrong answer and 

(d-b)/2 
for a right answer, can be regressed over persons 

on indicators of these background variables to see if object-

ive signs of bias are observable. Since items discovered to 

be biased can be deleted from persons' responses without 

spoiling estimates of their ability, we can correct for item 

bias in a test without losing the information available from 

items which are not biased. 

Item Reliability Can Be Estimated  
By a Standard Error of Calibration  

The Rasch model provides an estimate of the reliability 
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if each item calibration. This standard error of item dif-

ficulty depends on how large the calibrating sample is and 

on how central the sample is to the item. It is well ap-

proximated by 2.5/N
1/2 

logits where N is the calibration 

sample size, and 2.5 is a compromise value for the effect of 

sample relevance which varies from 2 when the sample is en- 

tirely centered on the item through 3 as the sample proportion 

of right answers goes below 15% or above 85% (Wright and 

Douglas, 1975, 16-18, 34). 

Item Banks Can Equate All Possible Tests  

When items are constructed and administered so that 

their performance approximates the Rasch model, then item 

difficulties estimated from a variety of calibrating samples 

can be shifted easily onto a single common scale. The re-

sulting commonly calibrated items form an item bank from which 

can be drawn any subset of items thought to be appropriate to 

make a best test (Choppin, 1968, 1976; Willmott and Fowles, 

1974, 46-51). Since the measures implied by scores on all 

such tests are automatically equated, the problem of test 

equating for all possible tests drawn from the bank is com- 

pletely solved, once and for all (Rentz and Bashaw, 1975, 1977). 

Tests are usually equated by giving them to a common 

sample of persons and connecting them by their simultaneous 

score distributions. All the items on a pair of tests administered 
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this way can be calibrated onto a common Rasch scale by con-

sidering the pair as one long test. A more economical method 

for building an item bank, however, is to embed links of 10 

to 20 common items in pairs of otherwise different tests. 

Each test can then be taken by its own sample of persons so 

that no person need take more than one test. All items in all 

tests can be connected through the network of links. 

If two tests, (a) and (b), are joined by a common 

link of K items, each test is given to its own sample of N 

persons, and d
ia 

and d
ib 

are the pair of estimated difficulties 

for item i with standard errors of 2.5/N
1/2

, then the constant 

necessary to translate all item difficulties in the calibration 

of test (b) onto the scale of test (a) is 

K 
t
ab 

= E(d
ia 

- d
ib

)/K 	 [16] 

with standard error 3.5/(NK)
1/2 

 

The quality of this link can be judged by the fit 

statistic 

K 
E(dia 	d

ib  - tab)  2
N/12 	 [17] 

which is approximately chi-square with (K-1) degrees of 

freedom. 

As the number and difficulty range of items to be 

calibrated into an item bank grows beyond the capacity of any 
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one person, items can be distributed over a network of inter-

linking tests and the estimated translations checked against 

one another for coherence (Doherty and Forster, 1976; Ingebo, 

1976). 

(Figure 2) 

Figure 2 is a picture of such a network. Each circle 

signifies a test sufficiently narrow in its range of item dif-

ficulties to be just right for a suitable sample of persons. 

Each line connecting a circle is a link of common items shared 

by the two tests it joins. The building blocks are the ten 

triangles of three tests each. If a triangle fits, its three 

translations should sum to within 12/(NK)
1/2  of zero, where N 

is the average sample size and K is the average link size. 

The quality of the network can be evaluated from the size of 

these triangle sums. 

The outcome is a bank of commonly calibrated items, 

larger in number and more dispersed in difficulty than any 

single person could cope with, yet providing the item resources 

for a prolific family of useful tests, long or short, easy or 

hard, widely spaced in item difficulty or narrowly focused, 

all automatically equated in the measures their scores imply. 

Item Banks Can Provide  
Versatile Criterion Referencing  

Not only standard items written by national experts 
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Figure 2 

Network for Linking Tests into an Item Bank 
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but special items written by local users can be calibrated 

into the same bank. The decisions for keeping or dropping 

items, whether nationally sanctioned or locally inspired, 

can be made on entirely objective grounds. If an item fits, 

it is kept. If there are milestone events like grades, pro-

motions and graduations, then mastery of these criteria can 

be introduced into the analysis along with performance on 

ordinary items and each criterion can be calibrated into the 

bank just like any item. Then 'every measurement mode will 

deliver that person's standing with respect to all calibrated 

criteria. Criterion referencing can be done with any items 

in the bank. 

The investigation of what kinds of items fit a bank 

and what kinds donot makes possible a detailed analysis of — — 

the latent variable's operational definition. Any hypothesis 

about the nature of the variable which can be expressed in 

observable events can be empirically investigated by attempt-

ing to calibrate these "challenge" events into the bank and 

observing how well they fit. 

Item Banks Can Expedite Norm Referencing  

Norms are no more fundamental to the calibration of 

items than distributions of height are to the ruling of yard-

sticks. But once a bank is established, it is very useful to 

learn the normative characteristics of the variable it defines. 
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To norm a variable, rather than a test, we need only use 

enough items to estimate the norm statistics. The mean and 

standard deviation of any cell in our sampling plan can be 

estimated rather well from a random sample of 100 persons 

taking a norming test of 10 items (Wright, 1977) . Once the 

variable is normed, all possible scores from all possible 

tests drawn from the bank are automatically norm referenced. 

Person Measurement Can Be Test-Free  

When two persons earn the same score we usually 

take their test performances to be equivalent. When we do 

not care which items produce a score, we are practicing 

"item-free" measurement. The Rasch model shows how item-free 

measurement within a test leads, without additional assumptions, 

to test-free measurement within a bank of calibrated items. 

This is done by removing test differences in item difficulty 

so that what is left is a test-free person measure on the 

scale defined by the bank calibrations. 

Person score depends on the number of items L in 

the test, their mean difficulty level H, their difficulty 

variance U and the ability b r  of the person scoring r. The 

Rasch model combines these factors to approximate the person 

score 

r = L e 	 1 + e 
[(b r  - H)/X) /{1 	 [(b r - H)/X], 

[18] 

1/2 
where X = (1 + U/2.89) 
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When we solve this equation for 

b
r 
= H + X Zn[r/(L - r)] 	 [19] 

we see how the Rasch model adjusts test-bound person scores 

for test difficulty level and spread to produce test-free 

person measures. 

Measurement Validity Can Be Evaluated  
by a Chi-Square Test of Person Fit  

When a person takes a test we cannot be sure he will 

work as intended. We try to give him enough time, to choose 

items relevant to his ability level and to motivate him so 

that he will work with all his ability on the answer to every 

item. But we know that some persons under some circumstances 

nevertheless render flawed performances. Test scores are 

bound to be influenced by guessing, sleeping, practice and 

speed. We must detect these influences and, where possible, 

correct for them. If guessing on difficult items or sleeping 

on easy items influences a person's responses, then plotting 

his response residuals -e(b-d)/2  for a wrong answer and 

(d-b)/2 
for a right one against item difficulty will bring 

that out. Figure 3 shows these residuals plotted against 

the estimated differences (b - d) for typical guessers and 

sleepers. 

(Figure 3) 
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Figure 3 

Residuals from the Rasch Model 
Identifying Guessers and Sleepers 
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If lack of practice affects early items or lack of speed 

affects late ones, plotting residuals against item posi-

tion will bring that out. 

These analyses are available for each person. No 

assumption need be made that everyone guesses, sleeps, 

fumbles or plods. Those possibilities can be evaluated 

on an individual basis and each person's responses edited 

to remove or correct the disturbance he actually manifests. 

Another source of person misfit is item bias. If 

the test of a math item is difficult to read, then poor 

readers will find it biased against the expression of their 

math ability. If a reading item uses special vocabulary, 

then it will be biased against the expression of reading 

ability among the unexposed. The analysis of residu.ils puts 

the detection of item bias on a sound footing and provides 

a quantitative basis for correcting it (Wright, Mead, and 

Draba, 1976). 

Measurement Reliability Can Be Estimated  
by a Standard Error of Measurement  

The precision with which a particular person is 

measured by a test depends on how many items he takes and 

how relevant these items are to his ability. When the test's 

difficulty level is within a logit or so of the person's 

ability then item relevance plays a minor role and the standard 



-17- 

error of measurement can be approximated by 2.5/L 1/2
, where 

L is the number of items taken and 2.5 is a compromise value 

for the test relevance coefficient (Wright and Douglas, 1975, 

16-18, 34). 

Best Test Design Becomes Simple  

With an item bank to draw upon and a model to 

specify how a person and an item are supposed to interact 

it becomes easy to design and construct the best possible 

test for any measurement situation (Wright and Douglas, 1975, 

1-18). All reasonable possibilities for target distributions 

and test shapes are covered by the following simple procedure 

(Wright and Douglas, 1975, 26-41). 

1. Guess target location M and uncertainty S as 

well as possible. If outer boundaries are used to specify 

the target, relate them to M and S by letting the lower 

boundary define M-2S and the upper boundary define M+2S. 

2. Design a - test centered at M and spread evenly 

over the range M-2S to M+2S, with enough items between to 

produce a test length of L = 6/SEM
2
, where SEM is the de-

sired standard error of measurement. 

3. Select from the item bank the best available 

items to fulfill this design and use the mean and the range 

of the obtained item difficulties to describe the height 

h and width w of the resulting test. 
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This test is as good for all practical purposes as 

any other test of equal length which might be constructed to 

measure the anticipated target. One all-purpose table of 

within test measures x fw 
for relative scores of f = r/.L on 

tests of width w and height h can be used to convert any 

score r on any such test into a test-free measure of person 

ability b f  through the relation b f  = h + x fw . Standard errors 

can be approximated with 2.5/L
1/2 . No further calculations 

are ever needed to convert a test-bound score to a test-free 

measure (Wright and Douglas, 1975, 32-35). 

Tailored Testing Becomes Easy  

The construction of a bank of calibrated items makes 

the implementation of tailored-testing easy. The uniformity 

of measurement precision between 25% and 75% right answers 

shows that we need only bring items to within a logit of 

their target for optimal tailoring. In many situations the 

grade placement of the target group or pupil and the variable's 

grade norms will be sufficient to determine an appropriate 

selection of items. Typical within grade standard deviations 

are about one logit. When this is so, even a rough idea of 

a pupil's within grade quartile provides more than enough 

information to design a best test for that pupil. 

If placement tailoring is inconvenient, then per-

formance tailoring can be accomplished with a self-scoring 



-19- 

pilot test of 5 to 10 items spread out in difficulty to 

cover the worst possible target. Pupils can use their number 

right to guide themselves into a second test of 40 to 50 

items focused on the ability region implied by their pilot 

score (Forbes, 1976). 

If an even more individualized procedure is desired, 

the pupil can be given a booklet of 100 or so items arranged 

in uniformly increasing difficulty and asked to find his own 

working level. His tailored testing begins when he finds 

items hard enough to interest him but easy enough to handle. 

He works forward into more difficult items until time is up 

or the increasing difficulty overwhelms him. If time remains, 

he goes back to his first item and works backward into easier 

items. The self-tailored test on which this pupil is measured 

is the continuous segment of items from the easiest through 

the most difficult he attempts. The procedure is self-adapting 

to individual variations in speed and level of productive 

challenge. The individualized test segments which result are 

handled by using a self-scoring form to record the sequence 

number of the easiest and hardest items tried and the number 

of right answers. These three statistics can find the cor-

responding measure and its standard error in a one page table 

calculated to fit with the booklet of items. 
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