4. DEDUCING THE MEASUREMENT MODEL

OBJECTIVITY

In this chapter we deduce the Rasch Model from Thurstone’s requirement that item compari-
sons be sample free. Thurstone (1928) says, “The scale must transcend the group measured ... its
function must be independent of the object of measurement.” (p. 228). This ideal for measurement
requires that the comparison of two items i and j be independent of whatever persons are used to elicit
evidence of the scale difference between these two items.

Because of the symmetry in any person-by-item interaction, Thurstone’s ideal also requires
that the comparison of any pair of persons n and m be invariant with respect to the particular items
employed. As Wright (1968) explains, “Object-free instrument calibration and instrument-free
object measurement are the conditions which make it possible to generalize measurement beyond the
particular instrument used. to compare objects measured on similar but not identical instruments, and
to combine or partition instruments to suit new measurement requirements.... When we compare one
item with another in order to calibrate a test, it should not matter whose responses to these items we
use for the comparison. Our method for test calibration should give us the same results regardless of
whom we try the test on. This is the only way we will ever be able to construct tests which have
uniform meaning regardless of whom we choose to measure with them.” (p. 87-88).

Rasch (1960, 1961, 1968, 1977) designated this measurement property objectivity. “In the
beginning of the 60°s I introduced a new - or rather a more definite version of an old - epistemological
concept. I preserved the name of objectiviry for it, but since the meaning of that word has undergone
many changes since its Hellenic origin and is still, inevervday speech as well as in scientific discourse,
used with many different contents. I added a restricting predicate: specific.” (1977. p. 58).

Let us examine this measurement goal with a simple example.
COMPARING TWO ITEMS

We require the comparison of two items to be independent of which people help us to make
that comparison. What are the possibilities?

1. Person 1 takes both items, / and j and answers them both correctly. In this case, we
cannot compare these two items on the basis of these two responses because both

responses are the same. We can see no difference between them.

2. Person 2 answers both items incorrectly. Again we cannot compare the two items for the
same reason.
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3. Person 3 answers item i incorrectly but item j correctly. Now we see a difference
between the responses to items i and j and can infer that item j is probably easier than
item  for Person 3.

4. Person 4 answers item i correctly but item j incorrectly. Again we have a difference,
although the reverse of the previous case. Now we infer that item i is probably easier for
Person 4 than item j.

Our inferences from these examples are based upon the reasonable, even necessary, require-
ment that. other factors being equal. an item solved correctly is easier than an item solved incorrectly
bv the same person.

Let more and more people take this simple test of two items. The only respondents that tell
us about the difference between the two items are those who differ in their outcomes, i.e. those who
answer one item correctly but the other item incorrectly.

As the number of persons who take these two items becomes indefinitely large, we want to be
able to record the outcome without bothering with the exact number of persons who happen to be
involved. To do this we change our recording from counts to percents.

Suppose, among persons getting one item correct but the other incorrect, we have 10% correct
for item i but 90% correct for item j. We can use the ratio of these two percents to indicate the
difference in difficulty between items i and: i.e.. itemj is gotten correct (90%)/ (10%) = 9 times more
often than item i.

If a stable and hence useful relation between items 7 and j exists, then we must expect the ratio
of their relative success rates to remain statisticallv equivalent irrespective of the people who respond
to them. Should the ratio vary substantially between different groups of people, then the differences
in ratio would have to be traced to extraneous factors differentiating the groups and thence to local
interactions between item content and group characteristics.

When varying results of this kind occur, items cannot be calibrated objectively. Then we need
to continue our investigation with contrasting groups of persons to uncover and bring under control
the extraneous factors which cause the ratios to vary and thus prevent the establishment of a sample-
free comparison of the items.

If, however, in many additional groups taking these two items, we observe a series of ratios
close to the ratio of the first group, i.e. about 9 to 1 (with minor variations like 9.5to 1 and 8.5to 1)
we may decide to interpret these ratios as statistically equivalent and to conclude that we have
observed a consistency on which to build an objective calibration of items and hence an operational
definition of a stable variable.

We may conclude that it will be useful to think of a “fixed” difference in difficulty between
these two items, one that is independent of the differences among the groups of people that produced
ratios near 9 to 1 and hence to characterize this difference between these two items in a general way
by this ratio (or, to express it explicitly as a “difference”, by the logarithm of this ratio).
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Observing a comparison of i and j requires counting how often item i is answered “correct”
by persons who also answer “incorrect” to item j and comparing, by means of their ratio, this “i > ;”
count with the reciprocal “j > i’ count of how often the reverse occurs.

Estimating a difficulty ratio between items i and j from this pair of reciprocal counts requires
a probability model for the occurrence of the counts which can implement a sample-free, person-
invariant, comparison of the items.

The observed percents (i.e. relative frequencies) can be extrapolated conceptually to proba-
bilities of correct (P) and incorrect (1 - P) responses to items i and j and we can use this abstract
probability P to model what is likely to happen when any person tries items i and j.

Let the probabilities for the two outcomes to the pair of items be:

Pr{(i = yes), (j =no)]=F, for "i > j"
and
Pr[(i = no), (j = yes)]= P, for " j>i"

and let the specification of the comparison of the items be the ratio:

Pr{(i=ves). (j=no)] F,
Pr{(i=no). (j=ves)] P, 4.]

Let P, f(n,i) represent the. as yet unknown but now to be deduced, probability that person
n succeeds on item i. Then the comparison of Equation 4.1 becomes:

P, Pn(l _Pr )
P, (1-R.)P, 42

N

The particular function P, = f(n,i) which we seek is one which maintains Thurstone’s
invariance or Rasch’s objectivity, one which enables Equation 4.2 to be a person-free comparison of
items i and j - a comparison independent of who person n happens to be.

To obtain Thurstone’s invariance or Rasch’s objectivity, the comparison of probabilities in
Equation 4.2 must stay the same regardless of which persons are involved. Equation 4.2 must,
therefore, hold for any pair of suitable persons, such as persons » and m:

Pni(l _Pnj) _ Pmi(l_ ij)
(1-P)R, (1-P,P, 4.3

Equation 4.3 can be used to specify the odds that person n answers item i correctly as:

v

where the triple equal sign "=" means "this equation is required by definition."
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To obtain a general invariance, and hence a useful “objectivity,” this equation must hold for
all suitable persons n and m and, by the way, also for all suitable items i and j.

The triple equals sign "=" signifies that this equality relation is “the definition” of an
“objective” comparison, i.e. the definition of sample-free item calibration and also a test-free person
measurement, i.e. Rasch’s “objectivity,” or Thurstone’s “invariance.”

We intend to deduce the specification of P, = f(n,i) from Equation4.3. Since we are entirely
free tochoose the particular other person m and the particular otheritemj inany way thatis convenient
and since the definition of every scale requires the specification of an origin to anchor that scale, it
is particularly convenient to choose m = o to be any person with ability right at the origin of the scale
and also j = o to be any item with difficulty at the same origin. This choice completes the anchoring
of the scale by specifying that when any person takes any item with a difficulty which exactly matches
their ability. then their probability of success on that item will be exactly P = 1/2.

Inserting j = 0 and m = o into Equation 4.3 and solving the middle and right side of the equation
for the odds of person n succeeding on item / produces:

P _ B ][ B ]0-R)
(1-R.) _(=P)] [A=B)}| By

(-r)j [0=-R)] L F

00

= g(n*h(i)*C = g(n)* h(i) 4.4

P . : . . . .
because g(n)= 1 =__ is a function of n and the choice of orgin, but not a function of i,

N

h(i) = —p _o;D is a function of i and the same choice of origin, but not a function of »,

ol

and C= [(1 -P)/P ] =1 because we chose to relate persons and items so that

00

R)/}E(I_P()O)El/z *

Equation 4.4 specifies that the odds of person n succeeding on item i must be entirely
determined by the product of a single valued function characterizing person n and another single-
valued function characterizes item i and by nothing else. This defines a ratio scale in g(n) and h(i).

To express the relation between person » and item ; on an interval, or difference scale, in B, and D,,
we take the logarithm of Equation 4.4:
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log{ B }:Iog [g(n)xh(i)] =log g(n)+log (i)

=G(n)+H(@{)=B, - D,
where B, =log g(n) and — D, =log h(i) . 4.5

Equation 4.3 can also be used to address Thurstone’s concomitant 1926 requirement that the
individual measure not depend on which particular items are used so that it becomes “possible to omit
several test questions at different levels of the scale without affecting the individual score” (p. 446).
(By “score” Thurstone denotes a generic test-free “measure” rather than a necessarily test dependent
raw score.) This requires that the comparison of any pair of persons n and m be invariant with respect
to the particular items employed for all i andj. This requirement also leads to Equation 4.3 and thence
to Equation 4.5.

Another way to write Equation 4.5 is to solve for P so that:
P, =exp(B, —D,)/[1+exp(B,~ D)] 4.6

This is the equation known as the “Rasch Model” because Rasch was the first person to use this
equation to construct measurements.

Most important, this specification of P, is unique in that it is both sufficient and necessary for

measurement to occur. It is the one and only P, = f(n,i) which can support the construction of

invariant scales meeting Thurstone’s criteria, or any other measurement criteria, for objectivity in
measurement.

PARAMETER SEPARATION

The Rasch model can be used to seek a useful joint ordering of items and persons. The form
in which its parameters occur, (B, — D,), linear and without interactions, permits likelihood equations

in which the relation between data and person ability parameters can be entirely contained in one
estimation equation and the relation between data and item difficulty parameters entirely in another.
This happens because the algebraic separation of parameters specified by the Rasch model enables
derivation of conditional estimation equations for either set of parameters such that the equations for
estimating item difficulties do not involve the person ability parameters and the equations for
estimating person abilities do not involve the item difficulty parameters.

SEPARATING ITEM COMPARISONS FROM PERSONS

Equation 4.6 can be used to specify the odds that person n answers item i correctly as:

[P, /(A—-PFP)]=exp(B,—D,) . 4.7
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The logarithm of Equation 4.7 1s:

log[Pm' /(1= Pm)] =B -D,. 4.8
in log-odds units or “logits.”
The comparable log-odds for any other item j and the same person n is:

log[P, /(1- B,)|=B,-D;. 4.9

Items i and j can be compared without interference from B, or any other B, by subtracting
Equation 4.8 from Equation 4.9. This vields:

(B.—-D.)-(B,-D)=
(D,- D) =log{[R,(1- B,)]/[R.C1- B} 410

Equation 4.10 does not involve B, at all - exactly what Thurstone called for in 1928.

The comparison of item i and item j in Equation 4.10 depends on the participation of relevant
persons, but not on any particular persons. P, and F,; are both dependent on the ability of person .
But the parameter separation which is unique to the Rasch model allows us to combine them in
Equation 4.10 so that B, cancels out leaving the comparison (D, — D;) of items i and j completely
untroubled by person effects.

SEPARATING PERSON COMPARISONS FROM ITEMS

For any other person m and item i the log-odds is:

log[P,/ (1~ B,)]=B,—D,. 411
Now persons r and m can be compared by subtracting Equation 4.11 from Equation 4.8:
(Bn _Di)_(Bm —_Di)=
(B, - B,)=log{[P.(1- B,))/[B.(1- B.)]} 4.12
Equation 4.12 does not involve the item parameter D, at all - exactly what Thurstone called

for in 1926.
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The comparison of person »n and person m in Equation 4.12 depends on the use of relevant
items, but not on any particular items. P, and P, are both dependent on the difficulty of item i. But
the parameter separation which is unique to the Rasch model allows us to combine them in Equation
4.12 sothat D, cancels outleaving the comparison (B, — B,,) of persons n and m completely untroubled
by item effects.

The possibility of estimation equations for B, which are free from the individual effects of
particular D, is referred to as “test-free person measurement.” The possibility of estimation equations

for D, which are free from individual effects of particular B, is referred to as “sample-free item
calibration” (Wright, 1968).

For explanations and examples of Rasch measurement applied see Wright & Stone (1979)
and Wright & Masters (1982). For easy Rasch analysis on a PC, see Wright & Linacre (1991).
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