
THESTANDARDERROR OF AMEASURE

IATIONAND MISFIT ANALYSIS

The most immediate and also most convenient quantification of the precision of an empirical
measure is the standard error (SE) of the measure's estimate . The magnitude of the SE is either
determined from the factual structure ofthe measuring instrument (as in "to the nearest sixteenth of an
inch"on aruler) or calculated fromthemeasurementmodelused to calibrate the instrument . It is usually
estimated from the same data used to estimate the measure. This SE estimates the standard deviation
of innumerable independent replications of the data collecting process, when the only disturbances
imagined are those anticipated by the measurementmodel .

The convenience ofthe SE quantification ofprecision is that it is in the units ofthemeasureand
so can be used directly to specify :

1) an "identification of misfit", as in outside

	

three standard errors (SE) ;

2) a "region of confidence", as in within

	

twostandard errors (SE) ;

3) an "allowance for error", as in

	

one standard error (SE) .

The inconvenience of the SE is that when several samples of independent data bearing on a
common quantity to be estimated are combined to form a"better" estimate or when it is useful to keep
track of the sequential improvement of "precision" during a stepwise process of data collecting, the
corresponding SE's are not additive .

INFORMATION

Ronald Fisher devisedacure for this inconvenience in the 1920's (e.g . 1935,p. 182 ff.) . While
the SE's of a series of independently obtained, but commonly bearing, commensurable measures are
not additive, their inverse squares are. When applied to Raschmeasurement "Fisher information" can
be defined as

I=C/SEZ

where C= aconstant chosen to specify convenient "information" units.

For dichotomous data, as in test item responses scored 0 or 1, the inverse square of each
measure's SE is proportional to a count of how many "standard" items inform that measure.

In particular, when C --_ 4, then
1=4/SE2

becomes the minimumnumber ofperfectly targeted (i.e . maximallyinformative) items it wouldtake to
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produce this SE . I is the "information" in the estimate . We will call the units of I = 4 / SE2 "EQUITS," for
EQUivalent on-target ITemS.

The additivity of I = 4 / SE2 can be seen in the algebraic definition of SE for Rasch modeled
dichotomous data.

Then

where

L

is the probability of a right answer given person measure B and item difficulty D; , and

	

signifiesa
summation over the L items taken . Thus

is an expression which adds [P(1- P,)] over items .

When every item is perfectly targeted, then

P=1/2,

and so

COMPARINGINFORMATION

L

SE2=1/
[
Y,P(1-P)

P = exp(B - Dt) / [l + exp(B - D;)]

L

I=(4/SE2)=4*L.[P(1-P)1i

P(1-P,.)=1/4

L

I=4* YP,i (1-P) =L

the number of responses to perfectly targeted items necessary in order to obtain this
particular

L

	

1/2

SE= 1/ ylpi(1-P)

When we wish to compare the information value of a pair of measures, we can use their
corresponding SE's and this definition of information, I = (4 / SE2 ), to find out which measure contains
more information and by how many "equivalent on-target items" or "equits" .



Thus for measures B, and B2 we have

for which the advantage in equits of measure B2 over measure B, is

Comparison ofthe information values ofa pair of measures can also be calculated from theratio
of their error variances,

This ratio, RE2,, gives the "information" provided by the second measure B2 in units of the
"information" provided by the first B,, i .e ., it is the "Relative Efficiency" of the second measure with
respect to the first .

MISFIT ANALYSIS

Maximum information is obtained whenP = .5 so thatP (1- P) = .25 . While this would appear
ideal, there is a catch . Fit analysis requires the possibility of improbable, and hence unexpected
responses - responses for which

Then, when the highly probable response is notobserved, misfit and hence invalidity is implied .
Were all items targeted successfully near P = .5, this kind of fit analysis for verification of response
validity would not be possible . Since X= 0 or 1 would be equally likely, no improbable condition with
which to detect misfit could be observed.

THE EFFICIENCY - FITPARADOX

I, = 4 / SE, equits

12 = 4 /SE2 equits

I2 -I, =4(1/SE2-1/SE,2 )

= 4(SE,2 - SE2) / SE,2 *SEZ

RE2, = 12 / I, =SE,, ISE2

P-~ 1 butX=0 or P-~ 0 but X=1.

1 . Responses to items which provide maximum information because P ---) .5 allow
minimummisfitdetection .

2 .

	

Responses to items which allow maximum misfit detection because P --4 0 or 1
provide minimum information .

Best test design requires a compromise between these extremes . The simultaneous avoidance
ofboth extremes benefits greatly from prior knowledge concerning the relative locations of items and
persons.



BESTTESTDESIGN

We want the items to elicit maximum information from the person . But we must balance the
amount of information (reliability, precision) gained against the concomitant loss of opportunity to
detect misfit and, hence, to verify validity . Where we have no knowledge of a person's ability, then
itemsmust be ofadifficulty range sufficiently wide to coverthe reasonable possibilities. This means
that while some items will identify the location of the person between items passed and items failed,
other items will inevitably turn out to be too far fromthe person's discovered ability to contribute much
information aboutthat ability. Theoff-target items, however, will be useful for identifying misfit and
thus verifying validity .

When we have auseful expectation aboutwhere aperson is on the variable to be measured, then
item selection canbe accomplished with maximumutility andefficiency by focusing most of the items
on the interval in whichwe expect the person to be located, butincluding some additional intentionally
off-target items to verify the validity of this location .

We useenough targeted items to "fix" the person's location with sufficientprecision (SEZ = 4/ L),
where this Lis thenumber of on-target items) for ourtesting purpose. Then we add enough additional
off-target items (2 logits aboveandbelowwherewe expect the personto be located) to verify the validity
of our measure.

Theefficiency of this design depends on the extent of ourknowledge of the person prior to the
test . Withoutsome prior focusing knowledge, we must use awide rangeofitems. This will guarantee
enough off-target items to validate the measure, butwill cost more items than anarrow on-target test
to reach equivalent precision.

Targeting an educational test to a particular student requires both the art of knowingthe student
andthe science ofmeasurement. Teaching intuition canguide expectations in the absenceofquantitative
knowledge. When previous measurements are also available, they too can be utilized .

INFORMATION, EFFICIENCYANDPRECISION

Theway informationandefficiency enter intojudgingthe value of an observation is through their
bearing on the precision of measurement. Measurement precision depends on the number of items in

the performance and on the difference in logits JB- DI between each item difficulty andthe person's

ability. We can simplify the evaluation of each item's contribution to our knowledgeofthe person by
calculating what percent of a best possible item the item in question contributes. Theseare the values
of INF entered in Column 2 of Table 17.1 .

We call this information index INF= 400[P(1- P)]

the "relative efficiency" of the observation.

The relative efficiency (INF) is the I defined in Equation 17.8 but scaled by the factor 100 so



Table 17.1

Information and Misfit Statistics

1
LOGIT DISTANCE
BETWEEN PERSON

2

	

3

	

4
% EFFICIENCY OF AN

	

NUMBER OF ITEMS L

	

IMPROBABILITY OF AN
OBSERVATIONAT

	

NEEDED TO MAINTAIN UNEXPECTED ANSWER

Wright & Stone, 1979. Best Test Design. Chicago : MESA Press . Pages 73 and 216 .

AND ITEM

(B-Dj

IB-DI

INF = 400P(1- P)

EQUAL PRECISION

E L =1000 / INF

AT IB-Dj

P =1 / [l + exp( IB - Dj)]

0.0, 0.3 100 10 .50
0.4, 0.8 90 11 .33
0.9, 1 .2 75 13 .25
1 .3, 1 .4 65 15 .20
1 .4, 1 .5 55 18 .17
1 .7, 1 .8 50 20 .14
1 .9, 2.0 45 22 .12

2.1 40 25 .11
2.2 36 28 .10
2.3 33 30 .09
2.4 31 32 .08
2.5 28 36 .08
2.6 25 40 .07
2.7 23 43 .06
2.8 21 48 .06
2.9 20 50 .05
3.0 18 55 .05

3.1 16 61 .04
3.2 15 66 .04
3.3 14 73 .04
3.4 12 83 .03
3.5 11 91 .03
3.6 10 100 .03
3.7 9 106 .02
3.8 9 117 .02
3.9 8 129 .02
4.0 7 142 .02

4.1 6 156 .02
4.2 6 172 .02
4.3 5 189 .01
4.4 5 209 .01
4.5 4 230 .01
4.6 4 254 .01



that it will give the amount of information provided by the observation at IB - DI as a percentage of the

maximum information that one observation "exactly on target" at IB- DI = 0 would provide .

The relative efficiency (INF) ofan observation can be used to estimate the potential value of any
particular item for measuring aparticular person . This can be done by considering how much information
would be lost by removing that item from the test . Thus, INF = 23 % for IB - DI = 2.7 indicates how
much of a perfectly targeted item we gain by including that item in the measurement of the person and
conversely how much we lose by omitting that item . The "how much" is 23% of the most we could get
from one item exactly on target at IB- DI = 0.

When an item and person are close to one another

	

IB

	

DI

	

0 ; i.e., on target, then the item
contributes more to the measure ofthe person than when the item andperson are far apart JB

	

DI
The greater the difference between item and person, the greater the number of items needed to obtain
a measure of comparable precision and as a result, the less efficient each item .

Once we have estimates of person ability B to combine with our knowledge of item difficulty
D, wecan determine the relative efficiency ofany item . Column 2 ofTable 17.1 gives thepercent relative
efficiency (INF) by which any observation at the absolute difference JB - D1 given in Column 1, provides
information about that person-item interaction .

It requires five INF = 20% items at IB - DI -> 2.9 to provide as much information about a person
as could be provided by one INF = 100% item at JB- DI ---> 0 .

When IB - D) is three, it takes four times as many items to equal the information to be had from
items in the IB- DI < 1 region, within one logit of the person .

The test length necessary to maintain a specific level of measurement precision is inversely
proportional to the relative efficiency ofthe items used . The number Lof less efficient items necessary
to match the precision of 10 exactly-on-target, IB-4 = 0, items is given in Column 3 of Table 17 .1 .

Column 3 shows L=1000 / INF the number of items needed to maintain equal precision over
the range of possible values of IB - DI .

There is also, however, the verification or validation oftest performance validity to keep in mind.
When we are off-target because IB-DI > 2 or 3, then we can use the possibility of unexpected
(improbable) responses to evaluate response validity . Column 4 in Table 17 .2 gives the probability
of an unexpected response (i .e . the improbability of the observed response) for each value of IB- DI .

Note that as IB-P > 2.8, the probability of an unexpected response such as

X = 0 when (B - D) > 2.8 or X =1 when (B - D) < -2.8



drops to P = .05 . This produces the possibility of a statistically significant "misfit" and hence of a
probable invalidity in that response to that item .

Detailed examples of misfit analysis are given in Chapter 4 of Best Test Design (Wright and
Stone, 1979) .

To standardize our use of Table 17 .1, we use this guide :

------------------------------------
Slightly Off

	

2 < IB-DI < 3

	

- poor efficiency, less than 45%
- misfit detectable when unexpected

responses accumulate
------------------------------------
Rather Off

	

3 < IB- DI < 4

	

- very poor efficiency, less than 18%
- even single unexpected responses

indicate irregularity

Extremely Off

	

4 < IB- DI

	

- virtually no efficiency, less than 7%
unexpected responses always
require diagnosis

Location of Item (Ability-Difficulty)
Difference

Item Efficiency
and Misfit Detection

Right on Target IB- DI < 1 - excellent efficiency, 75% or better
- no misfit analysis possible

Close Enough 1 < IB- DI < 2 - good efficiency, 45% or better
- no misfit analysis possible
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