15. ESTIMATING ITEM CALIBRATIONS AND PERSON MEASURES

INTRODUCTION

In this chapter we will work through a mathematical approach to the estimation of Rasch model
item and person parameters (Rasch, 1960). This approach is especially suited to computer implem-
entation and most of the computer programs in use employ versions of the algorithms to be described.
The procedure is called UCON, for unconditional maximum likelihood estimation (MLE) (Wright &
Panchapakasan, 1969; Wright & Douglas, 1977a; Wright & Stone, 1979; Wright, 1980). The term
“unconditional” is used because there is another fully conditional maximum likelihood estimation
(FCON) which uses conditional probabilities to estimate item difficulties directly without involving
any simultaneous estimation of person abilities (Wright, 1968, 1980; Wright & Douglas, 1977b). FCON
has desirable theoretical properties, but itis difficult to implement when there are more than a few items.
UCON, on the other hand, approximates the results of FCON closely—and UCON seldom has any
trouble giving useful results.

Although calibration of item difficulties is the first stage in the implementation of the model, and,
in principle, precedes the measurement of persons, it is convenient to estimate item difficulties and
person abilities simultaneously. The analysis of fit is expedited by the computation of expected
responses of persons to items so that these expected responses can be compared with the observed
responses. These expected responses can be determined most easily when we have simultaneous
estimates of item difficulties and person abilities.

The estimation of statistical model parameters is the fundamental step of applied statistics.
When we view calibration as a problem in statistical estimation, the question arises as to which
estimation procedure to use. There are many estimation procedures: least squares, mean value,
minimum chi-square, maximum likelihood. The last procedure, MLE, developed by Ronald Fisher in
the 1920’s, has a number of useful properties. The Rasch model lends itself to MLE and the useful
properties of MLE translate into substantive fundamentals of measurement.

RASCHMLE PROCEDURES

Once a statistical model is specified, an equation for the probability of occurrence of any
observation follows. From this equation, the joint probability of any data set may also be specified and
thisequation used to answer the question: What is the probability that this particular set of data occurred
when this set of items was given to this group of persons? This joint probability is known as the
likelihood of the data. It is a function of the observed data and also of the initially unknown but soon
to be estimated parameters of the model (the item difficulties and person abilities). The MLE principle
is to select for the estimates of the parameters that particular set of values which makes the likelihood
of the data in hand as large as possible - a maximum.

The likelihood of the data is viewed as a function of known data and unknown parameters. The
parameters become the variables. Calculus is employed to find the particular values of these unknown
parameters that make the likelihood of these data a maximum. This is done by taking the derivative of
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the likelihood with respect to each unknown variable and setting this derivative equal to zero. This
produces equations which may be solved for the unknown values, which, when obtained, make the
likelihood of these data as large as it can get.

To review, we:

1) derive an expression for the likelihood of the data,

2) differentiate this expression with respect to each of the unknown parameters,
3) set each result equal to zero and

4) solve the resulting set of equations for the ML item difficulty and person ability
estimates.

When the Rasch model is applied to test data there are a large number of unknown parameters
to be estimated, many more than the one or two involved in the usual maximization problem.
Nevertheless, the principles are the same and when the procedure is applied step-by-step to one item
and then one person at a time no complications arise.

Usually when we solve equations for an unknown value in algebra, arithmetic operations like
addition and division are sufficient to obtain an explicit solution. The equation 5X +6 =20, forexample,
requires one subtraction and one division to reach the exact solution of X = 2.8. Since this kind of
equation can be solved by a finite number of simple arithmetical steps, it is called explicit.

Incontrast, an equation like X + 2 * sin X =.73 does notlend itself to simple arithmetic. Tosolve
this “implicit” equation we must resort to another method. A good way to solve this kind of implicit
equation was invented by Isaac Newton in the 1680’s.

Newton’s method:
1) areasonable guess is provided for the unknown value of X,

2) the “closeness” of this guess to the best solution is determined by noting how much re-
mains when this value for X is substituted in the equation,

3) the difference between the initial value for X and the remainder is then used to determine a
next “better” value for X,

4) this process for improving the estimate of X continues until the remainder gets small. How
small is left to the discretion of the person solving the equation.

Each step in this process is called an iteration. The iterative process will converge to a solution
for alarge class of implicit equations, among which are equations incorporating the exponential function
exp(X). All that are needed to implement Newton’s method are the derivatives of the equations to be
solved and good initial guesses. For the Rasch model equations, there are very sensible initial guesses
for the unknown item difficulties and person abilities.
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If welet f(x) = 0 be the equation to be solved for the unknown X, and, if f’(X) isits derivative
with respect to X and, if X, is the initial guess for the value of X, then Newton’s method specifies the
next better value for X as
x - J&Xo) 15.1

0 ’
F(Xp)

where f(x,) and f’(x,) are values of these functions when we substitute the initial value x, for X and

X, =

x, is the new, improved value for X at the end of the first iteration.

We can write a general expression for this relation which shows the value of x, at the end of
iterations in terms of what it was on the previous iteration:

f(X,,) 15.2
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! -1 f’(X,_I )

Since we may continue iterating until our result is as accurate as we wish, when should we stop
when estimating parameters for aRasch model? Experience has shown that when reporting values for
itemdifficulties and person abilities we never need accuracy greater than two decimal places. Enough

accuracy is obtained when we settle for an x, which makes the absolute difference between that x, and
its previous value x,_, in the vicinity of 0.005, that is, “correct” to the second decimal place.

MAXIMUM LIKELIHOOD ESTIMATION

The Rasch probability of any observation x,; for person n on item i is

P,

where x,; is the observed data, and may be either O or 1,

B,, D,) =P, =[exp X,,(B, - D,)]/[1 +exp(B, - D,) 15.3

B, is the unknown person ability measure and

D, is the unknown item difficulty calibration.

For a test of L items given to N persons for whom it is reasonable to think of the persons and
items as functioning independently i.e. as specified by Equation 15.3, the joint probability (the
likelihood) of all the data is found by multiplying together all N by L probabilities of the type in Equation
153,

The expression (A * *m)* (A **n) * (A * *q) may be written with the single base A and an
exponent which is the sum of the three exponents, A * *(m + n + g). When this notation is applied to
the N x L exponents of the likelihood function, we have
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L N
where isthelikelihood of the data, [TI1 is the continued product overn and i of all N * L probabilities

L N
P, and X X is the continued sum over n and i of all N * L exponents (X,.B, — X,.D,).

The double summation in the numerator can be distributed over the two terms with the result

L

exp[i B, :|X 2 D, Z X,

I?[ I:'i[l +exp(B, — D, )]

oxp) $B.R 3D
ﬁ ﬁ[l + exp(Bu - D. )]

15.5

L
where 2 X,; = R, is the right answer count or the raw test score for person r,

and 2 X,; = S, is the right answer count or raw sample score for item i.

With the likelihood in this form we see that the statistics required are not the separate person-
to-item responses but only their accumulations into the person scores R, and the item scores S,. Further,
the R,'s and S;'s are separated from each other. Each set multiplies its own parameters B,'s and D,'s

in turn. This separation is the defining characteristic of a Fisher “sufficient” statistic (Fisher, 1958)
and also the algebraic requirement for Rasch objectivity.

Although R, and S, are sufficient to estimate B, and D, these scores themselves are not
satisfactory as measures. Person score is not free from the particular item difficulties encountered in
the test. Nor is item score S, free from the ability distribution of the persons who happen to be taking

the item. Independence from these local factors requires adjusting the observed R, and S, for the item
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difficulty and person ability distributions they depend on. This adjustment is necessary to produce the
test-free person measures and sample-free item calibrations we desire.

In order to obtain the maximum of this likelihood with respect to possible values of the unknown
parameters, the likelihood needs to be differentiated with respect to the B’s and D’s in turn. This task
is easier when we take the logarithm of the likelihood. We can do that because the values which make
the logarithm of a function a maximum also make that function a maximum.

Since log(exp X) = X, the numerator of the log likelihood becomes simple. The denominator

turns into a subtraction and the double product becomes a double sum of log [] +exp(B, — D, )]

N L L N
Thus K =loga = Z B.R — Z DS, — 2 Z log[l +exp(B, — D, )] is the log-likelihood. 15.6

Since the derivative of the exponential function, exp X, reproduces itself and the derivative of
the logarithmic function, log Y, is 1/Y, the differentials required to produce solutions for dK / 9B and
0K/ dD are

d(D,S,)/dD, =S
d3(B,R,)/ 3B, = R

d log[l +exp(B, - D.-)] _ exp(B,-D,)

dB, - 1+exp(B, - D;) =
dlog[l +exp(B, - D;)] __exp(B, - D,) ==, 15.7
aD, 1+ exp(B, - D,) '

By differentiating the log likelihood K withrespecttoeach D, and then, separately, with respect
to each B, and equating each of these derivatives to zero to locate maxima, we obtain the two sets of

equations.
dK v exp(B,=- D,)

—==-8;4
oD, ‘" % 1+exp(B,- D;)

N
=—S‘.+Z P,=0foreachi=1,L

dK =+Rn—i exp(B, - D,)
JB i 1+exp(B, - D,)

n

L
=+R,- ) P,=0 foreach n=1,N 15.8
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Each of the first Lequations contains Nunknown B, 's and one unknown D,. Each of the second

N equations contains L unknown D, 's and one unknown B, .

Newton’s method uses the derivative of the equation to be solved, therefore we need to take the
derivatives of the above implicit equations with respectto D, and B, once again in order to solve them
by Newton's method. These derivatives are the second derivatives of the likelihood.

. — ex'p(Br: _Dt) == I ]59
SHice " 1+exp(B,-D,) 1+exp(D,-B,) '
the differentials needed to find the second derivatives of K with respect to B, and D, are
oK A
—_—= -5, + P,
aDI ! zn nit
Jd*K N N
aDiz =_ZnPﬂf(1_Pﬂi)=_anﬂf fOI'i=1,L
L
aK = Rrx = z Pm
JdB, !
d*K L
= =3 Pl PL,) = = :
BBE 2‘ m'( ni ) 2!‘ Q ni
for n=1,N where Q, =P, (1-P,) 15.10

These second derivatives are the product of P, and its complement (1-P,;) combined in

0, = P,(1- P,) where P, is the probability that person n gets item i correct.

Since 0, 2 0, these second derivatives are always negative. This tells us that the solutions to
Equation 15.8 must be maxima.

Before we apply Newton’s method to solve these equations, three uncertainties need to be
resolved.

1. What shall we use for initial values of the estimates? Although Newton’s method is usually
robust with respect to the choice of an initial estimate (meaning we will get to the same final
estimate no matter where we start), we will get convergence most rapidly if we use initial
estimates which are not far from the final estimates.

We can do this for items, by approximating the abilities of all persons at zero.
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Then the MLE’s of Equation 15.8 have the explicit solution:

N Y exp(-D)) _ Nexp(-D,)
2P = 2’1+exp(—D,-) ~ l+exp(-D,)

3 Nexp(-D;)
e, o PR P G W
. ' 2 " " l1+exp(-D))
exp(-D,) = S,/(N-S,)
and B = —Toil b s ol % et 15.11
" 8 v=s, 87, ’ ‘

This initial estimate is a simple logarithmic transformation (the logit) of the item scores.

By approximating the difficulties of all items at zero in the equations for the B’s in Equation
15.8, we find a similar explicit solution for B, as a simple logarithmic transformation of the
raw scores for person n

R
B =1lo 4 forn=1N
e g|:L R ] n 15.12

n

2. Although it may appear that the equations in 15.8 have N unknowns B, B,, ..., B, only the
statistics R, R,, ..., R, , are available to estimate them. When data is complete the values of

B, which can be estimated from a test of L items may therefore be indexed by R rather than by
n. Indexing persons by their raw scores highlights the fact that a raw score for a person is the
sufficient statistic for estimating that person’s ability.

In general, there will be more than one person with a given raw score. Since as far as ability
estimation is concerned, we are unable to distinguish among persons who took the same items and earned
the same raw score. We may group persons who took the same items according to their raw score.
If we let N, be the number of persons who scored R on the test, we may rewrite Equations 15.8 and
15.10 as

L-1
=S, + Y NPy, =0 15.13
R=1
d (0K &
—| — |==>» N P,.(1-P,
and aD,.[BD,.] ; R m( R:)
L-1
=—_ZNRQRi 15.14
R
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and Equation 15.12 as B, = lOg[L_ R] 15.14
R=1, L-1

where P, =exp(B;-D,)/ [1 +exp(Bg - Df)]

and Oy = Py(1- Py)

3. Were we to apply Newton’s method to these equations as they stand, we would find that the
iteration process would notconverge. This is because our set of equations contains one too many
unknowns to be uniquely estimated.

The Rasch model specifies the probability of a response by a person to an item as a function
of the difference between their locations on a variable.

The probability that a person with ability B, gets an item with difficulty D, correct, is exactly
the same as the probability for a person with ability (B, + 3), say, responding to an item with difficulty

(D, +3), because (B, +3)—(D, +3) = B, - D,. Since our choice of 3 was arbitrary, we see that an
infinite set of B’s and D’s will satisfy our equations providing only that they maintain their differences

(Bn _D:')‘

This problem of too many unknowns can be overcome by placing one restriction on the set of
B,'s and D,'s. The particulars of this restriction are not important algebraically. We could set any

person, say B,, equal to aconstant or any item, say D, , equal to some other constant. Any constant will
do. We have found it convenient for calibration to use the restriction that the sum of our set of estimated

L
item difficulties Z D, = 0 be zero. This centering on the test has the effect of reducing our unknowns

from (L—1)+L=2L-1to (L-1)+(L—1)=2L-2.

In order to maintain the possibility of convergence, we must implement this restriction
each time we derive an improved set of (D, ) values. Centering is accomplished by finding the mean

of the current estimates of the D, 's and subtracting this mean fromeach D,. Thisis done ateach iteration.

Thus the initial centered set of D,'s are

N-

S| < N-S§,
D‘.—log[ 5 }—Z{log[_w——sf ]}IL 15 16
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SOLVING THE MAXIMUM LIKELIHOOD EQUATIONS

Here is a systematic procedure for solving these equations and hence obtaining estimates of item
difficulty and person ability (Once all perfect and zero scores have been removed from the data matrix).

1. Determine the initial item estimates from Equation 15.16. Items are centered.

2. Determine the initial person estimates from Equation 15.15. Persons do not need to be centered.
In fact, they must not be.

3. Using all person estimates and the current estimate for each item 7, apply Newton’s method to

Equation 15.13 until differences between successive estimates of each D, thatis, (D/ - D, ) are
less than, say, .005 logits. The process is,

L-1

Si = ZNRPRE
D/=D ———f 15.17

i~ L
ZNRQRI
R

in which D, is the current estimate and D, is the next improved estimate. The

successive differences are (D] - D,).

4. Repeat step 3 for all items, i =1, L. When we have finished, we have a new and better set
of D, estimates.

5. Center these new D estimates.

&
D.=ZDi /L D/=D.-D. 15.18

6. Using these new centered D, estimates and the person estimate for a score of r = 1

(that is, B,), apply Newton’s method to Equation 15.10 expressed in terms of r instead
of n.

r~iPn- 0 15.19

until differences between successive estimates of B, that is (B/ — B,) are less than,
say, .005 logits.

The process is,

L
r—=» P,
B =R +_sz‘_ 15.20

)

ri

i
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inwhich B, is the current estimate and B/ is the improved estimate. The successive differences
are (B - B,).

7. Repeat step 6 for the second, then third, etc., raw score. When we have reached r = L - 1
we have a new and better set of B, estimates. Do not center these B, .

8. Atthis stage we have reached the end of the first major “loop”. This loop comprised L minor
loops on the items and L-1 minor loops on the person scores.

At the end of each major loop we determine whether the likelihood has been sufficiently
maximized by reviewing our convergence criterion for all 2L-1 estimates. Since it is unlikely that
satisfactory convergence will have been achieved in one major loop, we proceed to additional major
loops.

9. Using the latest person estimates and the current value for D,, apply Newton’s method as in Step
3 until convergence. Repeat for all items.

10. Center the latest set of D,'s.

11. Using these latest centered D, and the current value for B, , apply Newton’s method, Step 6, until
convergence. Repeat for all raw scores from 2 to L-1.

12. Determine whether asatisfactory overall convergence has been obtained at the end of this second
major loop and so on.

This estimation procedure usually converges to a criterion of .005 logits in 5 or 6 major loops.
There are rare circumstances in which an MLE cannot be obtained. When there are one or two items
or persons separated from the nucleus of the data by many logits, then round-off problems can occur with
the procedure outlined above. When this procedure fails it is almost always due to inaccurate editing
of the original data or to failure to center items each time a new set of estimates is produced.

Because of the way estimates are calculated in UCON there is a slight bias. This bias can be
corrected by shrinking all values of B and D by the factor (L-1)/L (Wright, 1988).

STANDARD ERRORS OFESTIMATES

A key benefit of a good estimation procedure is the simultaneous estimation of standard errors
forits estimates. These standard errors specify the modeled degree of precision (reliability) with which
the estimates can be obtained.

A familiar example of this is estimating amean from arandom sample of N observations. The
sample mean is, in many ways, a “best” estimate of the location parameter of the distribution from which
the random sample was drawn. The standard error of ameanis givenby § / N ', where S is an estimate
of the dispersion of the distribution calculated from the standard deviation of the N observations. Notice
that this standard error, or precision of estimation, is dominated by the size of the sample N ; the larger
the sample size, the smaller the standard error and so the greater the precision.
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With respect to the MLE procedure just described for the Rasch model, Ronald Fisher proved
that as long as sample size is reasonably large, the standard error of a ML estimate is well estimated
by the inverse negative square root of the second derivative of the likelihood function.

Fisher also proved that replicates of a MLE will, with sufficiently large sample size, have a
normal distribution with expected value equal to the parameter itself and with a standard deviation equal

to this standard error. We will use this result to set confidence limits on our MLE’s.

The second derivative of the likelihood, which served as a scaling factor for Newton’s method,
now plays an important statistical role. It gives us the standard errors for our estimates.

Thus from Equations 15.10 and 15.14

-172 . 1
SE(D,)= [a% [%—]] = (Z N,Q,,-j =35 N 1521
~W2 -2
-3 (3K L
SE(B,) =|:a?(§gj:l = [anJ ~2.5/ " 15.22

These standard errors are determined by substituting into P, = exp(B, — D, ) / [l +exp(B, - D, )]

the converged values of the B, and D, estimates and finding O, = P,(1—P,).

Item calibration and person measurement is now complete. Here is a summary of the results of
this MLE.

A setof L items estimates D, is obtained whose sum has been set to zero so that the measuring

system under construction has been centered on the calibrations of these test items. Some values will
be negative, indicating relatively easy items and some will be positive, indicating relatively hard items.

Associated with each of the D, estimates is its estimated standard error. We will see that D,'s
with values far from the sample of persons have relatively large standard errors and that standard errors
get smaller (and hence items more precisely estimated) as we get closer to items with D, values near
the B, values of the majority of the persons. This is a consequence of the formula for the standard error
in Equation 15.21. When D, isequal to B,, the value of P, is0.5 and so O, is0.25, its maximum possible

value. This is where the standard error is nearest to its theoretical minimum of 2 ; N2.

Equation 15.22 shows the way the standard error of B, is afunction of the number of items near
that B . The standard errors of the person abilities depend on how many of the item difficulties are near

the location of that person. The more items near the person, the smaller the standard error of the measure.
In atest whichis well centered on its target group we would expect the standard errors of person abilities
to be symmetric around acentral B near zero, corresponding to about half the items correct, and that these
standard errors would be large at both ends of our variable line and get smaller towards the center.
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Since MLE produces values for all scores r,forr=1tor=L- 1, we will have ability estimates
and standard errors for all possible scores, even when, in the calibrating sample, there were no persons
who actually obtained a particular score.
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