
15. ESTIMATING ITEM CALIBRATIONSAND PERSON MEASURES

INTRODUCTION

In this chapterwe will work through amathematical approach to the estimation ofRaschmodel
item and person parameters (Rasch, 1960). This approach is especially suited to computer implem-
entation and most ofthe computer programs in useemploy versions of the algorithms to be described .
The procedure is called UCON, for unconditional maximum likelihood estimation (MLE) (Wright &
Panchapakasan, 1969; Wright & Douglas, 1977a; Wright & Stone, 1979 ; Wright, 1980) . The term
"unconditional" is used because there is another fully conditional maximum likelihood estimation
(FCON) which uses conditional probabilities to estimate item difficulties directly without involving
anysimultaneous estimation ofperson abilities (Wright, 1968,1980; Wright&Douglas, 1977b). FCON
hasdesirable theoretical properties, but it is difficultto implementwhen there aremore than afew items .
UCON, on the otherhand, approximates the results of FCON closely-and UCON seldom has any
trouble giving useful results.

Although calibration ofitem difficulties is the first stage in the implementation ofthe model, and,
in principle, precedes the measurement of persons, it is convenient to estimate item difficulties and
person abilities simultaneously. The analysis of fit is expedited by the computation of expected
responses of persons to items so that these expected responses can be compared with the observed
responses . These expected responses can be determined most easily when we have simultaneous
estimates of item difficulties and person abilities .

The estimation of statistical model parameters is the fundamental step of applied statistics .
When we view calibration as a problem in statistical estimation, the question arises as to which
estimation procedure to use. There are many estimation procedures: least squares, mean value,
minimumchi-square, maximumlikelihood. The last procedure, MLE, developed by Ronald Fisher in
the 1920's, has a number of useful properties. The Rasch model lends itself to MLE and the useful
properties of MLE translate into substantive fundamentals ofmeasurement.

RASCHMLEPROCEDURES

Once a statistical model is specified, an equation for the probability of occurrence of any
observationfollows. From this equation, thejoint probability of any data setmay also be specified and
thisequation used to answer the question: What is the probability that this particular setofdata occurred
when this set of items was given to this group of persons? This joint probability is known as the
likelihood of the data . It is a function of the observed data and also of the initially unknownbut soon
to be estimated parameters ofthemodel (the item difficulties andperson abilities) . TheMLEprinciple
is to select for the estimates of the parameters that particular set of values whichmakes the likelihood
of the data in hand as large as possible - a maximum.

The likelihood ofthe data is viewed as afunction ofknown data andunknown parameters . The
parameters become the variables . Calculus is employed to find the particular values of theseunknown
parameters that make the likelihood ofthese data a maximum. This is done by taking the derivative of
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the likelihood with respect to each unknown variable and setting this derivative equal to zero. This
produces equations which may be solved for the unknown values, which, when obtained, make the
likelihood of these data as large as it can get.

To review, we:

1) derive an expression for the likelihood of the data,

2) differentiate this expression with respect to each of the unknown parameters,

3)

	

set each result equal to zero and

4) solve the resulting set of equations for the ML item difficulty and person ability
estimates .

When theRasch model is applied to test data there are alargenumber ofunknown parameters
to be estimated, many more than the one or two involved in the usual maximization problem.
Nevertheless, the principles are the same and when the procedure is applied step-by-step to one item
and then one person at a time no complications arise .

Usually when we solve equations for an unknown value in algebra, arithmetic operations like
addition anddivision are sufficient to obtain an explicit solution. Theequation 5X+6=20, for example,
requires one subtraction and one division to reach the exact solution of X = 2.8 . Since this kind of
equation can be solved by afinite number of simple arithmetical steps, it is called explicit .

In contrast, an equation like X + 2 * sin X =.73 does notlend itselfto simple arithmetic . To solve
this "implicit" equation we must resort to anothermethod. A good way to solve this kind of implicit
equation was invented by Isaac Newton in the 1680's .

Newton's method:

1) areasonable guess is provided for the unknown value of X,

2) the "closeness" of this guess to the best solution is determined by noting how much

	

re-
mains when this value forX is substituted in the equation,

3) the difference between the initial value forXandthe remainder is then used to determine a
next "better" value for X,

4) this process for improving the estimate ofXcontinues until the remaindergets small. How
small is left to the discretion of the person solving the equation .

Each step in this process is called an iteration. The iterative process will converge to a solution
for a largeclass of implicit equations, amongwhichareequations incorporatingthe exponentialfunction
exp(X) . All that are needed to implement Newton's method are the derivatives of the equations to be
solved andgood initial guesses. Forthe Raschmodelequations, there are very sensible initial guesses
for the unknown item difficulties and person abilities.
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If we let f(x) = 0 be the equation to be solved for theunknownX, and, if f'(X) is its derivative
with respect to X and, if Xo is the initial guess for the value ofX, then Newton's method specifies the
next better value forX as

MAXIMUMLIKELIHOOD ESTIMATION

Xi
=X - AXO)

f'(XO )
where f(x,) and f'(x,,) are values ofthese functions when we substitute the initial value x� forXand
xt is the new, improved value for X at the end of the first iteration.

We can write a general expression for this relation which shows the value of xt at the end of t
iterations in terms of what it was on the previous iteration :

X = X_ - AX1-1)
t

	

t 1

	

f'(Xt-,

Sincewemaycontinue iterating until ourresult is as accurate as we wish, when should we stop
when estimating parameters for aRasch model? Experience has shown that when reporting values for
item difficulties and person abilities we neverneed accuracy greater than twodecimal places . Enough
accuracy is obtained when we settle for an x t whichmakesthe absolute difference between that x t and
its previous value xt_, in the vicinity of 0.005, that is, "correct" to the second decimal place.

The Rasch probability of any observation x�; for person n on item i is

P(Xn;B., D;)=P�, =[exp Xn,(Bn - D;)]/fl+exp(Bn -D;)

	

15.3

where xn; is the observed data, and may be either 0 or 1,

Bn is the unknown person ability measure and

D; is the unknown item difficulty calibration.

For a test ofL items given to N persons for whom it is reasonable to think of the persons and
items as functioning independently i .e . as specified by Equation 15.3, the joint probability (the
likelihood) of all the datais foundby multiplying together allN byL probabilities ofthe type inEquation
15.3 .

The expression (A * *m) * (A * *n) * (A * *q) may be written with the single base A and an
exponent which is the sum of the three exponents, A * *(m +n + q) . When this notation is applied to
theN x L exponents of the likelihood function, we have
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L N

where

	

is the likelihood ofthe data, HR is the continued product over n and i of allN*Lprobabilities
i n

L N

Pni and EE is the continued sum over n and i of all N * L exponents (XniBn - XniDi ) .
i n

The double summation in the numeratorcan be distributed over the two terms with the result

exp[Xni (Bn -Di )]
i=1 n=1

	

1+ exp(B. - Di

expCi Bn I]Xni - EDi YXni
n i

	

i n

rl j l[l + exp(B, - DJ]

expl IBn Rn - IDiSi
_ n

	

i

fl ri[1 + eXp(Bn - Di )]
i n

L N

= rl j Pni
i n

L

where IXni = Rn is the right answer count or the raw test score for person n,
i

N

and y- Xni = Si is the right answer count or raw sample score for item i.
n
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With the likelihood in this form we see that the statistics required are notthe separate person-
to-item responses butonly their accumulations into the person scores Rn andthe item scores Si . Further,
the Rn 's and Si 's are separated from each other. Each set multiplies its ownparameters Bn 's and Di 's
in turn . This separation is the defining characteristic of a Fisher "sufficient" statistic (Fisher, 1958)
and also the algebraic requirement for Rasch objectivity .

Although Rn and Si are sufficient to estimate Bn and Di these scores themselves are not
satisfactory as measures . Person score is notfree from the particular item difficulties encountered in
the test . Nor is item score Si free from the ability distribution of the persons whohappen to be taking
the item. Independence from these local factors requires adjusting the observed Rn and Si for the item



difficulty and person ability distributions they depend on . This adjustment is necessary to produce the
test-free person measures and sample-free item calibrations we desire .

In order to obtain the maximum ofthis likelihood with respect to possible values of the unknown
parameters, the likelihood needs to be differentiated with respect to the B's and D's in turn . This task
is easier when we take the logarithm ofthe likelihood . We can do that because the values which make
the logarithm of a function a maximum also make that function a maximum.

Since log(exp X) = X, the numerator of the log likelihood becomes simple. The denominator

turns into a subtraction and the double product becomes a double sum of log 11 + exp(B. - Di )] .

N

	

L

	

L N

Thus K= log n =

	

BnRn -

	

DiS, -

	

I log[l + exp(Bn - DJ] is the log-likelihood . 15.6
n

Since the derivative of the exponential function, exp X, reproduces itself and the derivative of
the logarithmic function, log Y, is 1/Y, the differentials required to produce solutions for aK / aB and
aK / aD are

a log[l + exp(Bn - Di ) ] -

	

exp(Bn - Di)

a (D i S i ) / aD i = S

a(B t R n ) / aB n = R,i

dB,,

	

1 + exp(B n - Di )

a

	

_ _log1l +exp(Bn - Di )] -	exp(Bn - Di )

	

_
aDi	1 + exp(Bn - Di)

By differentiating the log likelihood Kwith respectto each Di and then, separately, with respect
to each Bn and equating each of these derivatives to zero to locate maxima, we obtain the two sets of
equations .

N

	

exp(Bn - Di)-S i + 7
n

	

1 + exp (B n -

	

D i
N

_ -Si +

	

Pni = 0 for each i = 1, L
n

aK = + R - L

	

exp(Bn - Di)
aBn

	

n

	

i 1 + exp(Bn - Di)
L

_ +Rn -

	

Pni = 0

	

for each n = 1, N
i

Pni
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Each ofthe firstLequations containsNunknown Bn 's andone unknown Di . Each ofthe second

Nequations contains L unknown Di 's and one unknown Bn .

Newton's method uses the derivative of the equation to be solved, therefore we need to take the
derivatives of the above implicit equations with respect to Di and Bn once again in order to solve them
by Newton's method. These derivatives are the second derivatives of the likelihood .

Since P . =

	

exp(Bn
- Di)

	

-

	

1

	

15.9n' l+exp(B.-Di ) l+exp(D,-Bn )

the differentials needed to find the second derivatives of K with respect to Bn and D, are

dK N

- - Si + Y, Pni
n

a2K __

	

_
aDi2

	

-1 Pni(1

	

Pni ) _ -I Qni for i=1,Ln

	

n

2K_ - 1 Pni (1

	

Pni) - - I Q niUBn

for n =1, N

	

where Qni = Pni (1- Pni )

	

15.10

These second derivatives are the product of Pni and its complement (1-Pni ) combined in

Qni = Pni (1- Pni ) where Pni is the probability that person n gets item i correct.

Since Qni >_ 0, these second derivatives are always negative . This tells us that the solutions to
Equation 15.8 must be maxima.

Before we apply Newton's method to solve these equations, three uncertainties need to be
resolved .

1 .

	

What shall we use for initial values of the estimates? Although Newton's method is usually
robust with respect to the choice of an initial estimate (meaning we will get to the same final
estimate no matter where we start), we will get convergence most rapidly if we use initial
estimates which are not far from the final estimates .

We can do this for items, by approximating the abilities of all persons at zero .
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Then the MLE's of Equation 15.8 have the explicit solution :

so

and

N

	

"

	

exp(-Di )

	

_

	

Nexp(-Di )
Pn`

_

	

n

	

1 +exp(-D.)

	

1 +exp(-Di)

"

	

Nexp(-Di ) -
-S; + y Pni = -Si +

	

- 0
1 +exp(-Di )

exp(-Di ) = Si / (N - Si )

and

	

Di = -log[
N

Si
Si

	

=+log N
S.

Si

	

for i = 1, L

	

15.11
i

This initial estimate is a simple logarithmic transformation (the logit) of the item scores .

By approximating the difficulties of all items at zero in the equations for the B's in Equation
15.8, we find a similar explicit solution for Bn as a simple logarithmic transformation of the
raw scores for person n

Bn =1ogl

	

Rn

	

I for n = l, N
L-R,,

2. Although it may appear that the equations in 15 .8 have N unknowns B1 , B2 , . . ., BN only the
statistics R1 , R2 , . . ., RL_1 are available to estimate them. When data is complete the values of
Bn which can be estimated from a test ofL items may therefore be indexed by R rather than by
n . Indexing persons by their raw scores highlights the fact that a raw score for a person is the
sufficient statistic for estimating that person's ability .

In general, there will be more than one person with a given raw score . Since as far as ability
estimation is concerned, we areunable to distinguish among persons who took the same items and earned
the same raw score . We may group persons who took the same items according to their raw score .
If we let N, be the number of persons who scored R on the test, we may rewrite Equations 15.8 and
15.10 as

15.12

-Si + Y, NR PRi = 0

	

15.13
R=1

_a _ax

	

L-1

=-j NRPRi(1-PRi)aDi aDi

	

R
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and Equation 15.12 as

and

BR _ log[
L
R
R

	

15.14
- ]

where

	

PRi = exp(BR - D;) / [l + exp(BR -D;)]

QRi = PRi ( 1 - PRi )

3 . Were we to apply Newton's method to these equations as they stand, we would find that the
iteration process would not converge . This is because our set ofequations contains one too many
unknowns to be uniquely estimated.

The Rasch model specifies the probability of a response by a person to an item as a function
of the difference between their locations on a variable .

The probability that a person with ability B� gets an item with difficulty D; correct, is exactly

the same as the probability for a person with ability (B� + 3), say, responding to an item with difficulty

(D; + 3), because (B,, + 3) - (Di + 3) = B,, - D; . Since our choice of 3 was arbitrary, we see that an
infinite set ofB's andD's will satisfy our equations providing only that they maintain their differences

(B� - Dj) .

This problem of too many unknowns can be overcome by placing one restriction on the set of
B,,'s and D;'s . The particulars of this restriction are not important algebraically . We could set any

person, say B,, equal to a constant or any item, say D3 , equal to some other constant . Any constant will
do . We have found itconvenient forcalibration to use the restriction that the sum ofour set ofestimated

L

item difficulties

	

Di - 0 be zero . This centering on the test has the effect ofreducing our unknowns
i

from (L-1)+L=2L-1 to (L-1)+(L-1)=2L-2 .

In order to maintain the possibility of convergence, we must implement this restriction
each time we derive an improved set of (D;) values . Centering is accomplished by finding the mean

ofthe current estimates ofthe Di 's and subtracting this mean from each D; . This is done ateach iteration .

Thus the initial centered set of Di 's are

Di = log I N-S; -~ to N-Si lL
g S; 15.16



SOLVINGTHEMAXIMUMLIKELIHOOD EQUATIONS

Here is asystematic procedure for solving these equations andhenceobtaining estimates ofitem
difficulty andperson ability (Once all perfect andzero scores have been removedfrom the data matrix) .

1 . Determine the initial item estimates from Equation 15.16. Items are centered .

2. Determinethe initial person estimates fromEquation 15.15 . Persons do notneed to be centered .
In fact, they must notbe.

3. Using all person estimates and the current estimate for each item i, apply Newton's method to

Equation 15.13 until differencesbetween successive estimates ofeach Di that is, (Di' - Dj are
less than, say, .005 logits . The process is,

L-1

Si -INRPRi

D,=Di- L-,R

	

15.17
NR QRi

R

in which Di is the current estimate and Di is the next improved estimate . The

successive differences are (Di - Dj .

4. Repeat step 3 for all items, i =1, L. When we have finished, we have a new and better set
of Di estimates.

5. Center these new D estimates.

D,'= Di - D.

	

15.18

6.

	

Using these new centered Di estimates and the person estimate for a score of r= 1
(that is, B, ), apply Newton's method to Equation 15.10 expressed in terms of r instead
of n.

until differences between successive estimates of Br that is (B; - Br ) are less than,
say, .0051ogits .

The process is,

Br = Br -f'

15.19
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in which B, is the currentestimate and B, is the improved estimate . Thesuccessive differences

are (BT - B, ) .

7. Repeat step 6 for the second, then third, etc., raw score. When we have reached r = L - 1
we have a new and better set of B, estimates. Do not center these B, .

8 .

	

Atthis stage we have reached the endof the first major "loop" . This loop comprised L minor
loops on the items and L-1 minor loops on the person scores .

At the end of each major loop we determine whether the likelihood has been sufficiently
maximized by reviewing our convergence criterion for all 2L-1 estimates . Since it is unlikely that
satisfactory convergence will have been achieved in one major loop, we proceed to additional major
loops.

9.

	

Usingthe latest person estimates andthe currentvalue for D,, apply Newton's method as in Step
3 until convergence. Repeat for all items.

10 . Center the latest set of D;'s .

11 . Usingthese latestcentered D; andthe current valuefor B,, applyNewton's method, Step 6, until
convergence . Repeat for all raw scores from 2 to L-1 .

12 . Determinewhether asatisfactory overall convergence hasbeen obtained at the endof this second
major loop and so on.

This estimation procedure usually converges to a criterion of .0051ogits in 5 or 6 major loops.
There are rare circumstances in which an MLEcannot be obtained . When there are one or two items
or persons separatedfrom the nucleus ofthe databy many logits, thenround-offproblems canoccurwith
the procedureoutlined above . When this procedure fails it is almost always due to inaccurate editing
of the original data or to failure to center items each time a new set of estimates is produced .

Because of the way estimates are calculated in UCON there is a slight bias . This bias can be
corrected by shrinking all values of B and D by the factor (L- 1)/L (Wright, 1988) .

STANDARDERRORS OFESTIMATES

A keybenefit of agood estimation procedure is the simultaneous estimation of standard errors
for its estimates . These standard errors specify themodeleddegree ofprecision (reliability) with which
the estimates can be obtained.

Afamiliar example ofthis is estimating amean from arandom sample of N observations . The
sample mean is, in many ways, a"best" estimate ofthe locationparameterofthe distribution from which

therandom sample wasdrawn. The standard error ofamean is givenby S / N v2, whereSis an estimate
ofthe dispersion of the distribution calculated from the standard deviation oftheN observations . Notice
that this standard error, or precision ofestimation, is dominatedby the size of the sampleN; the larger
the sample size, the smaller the standard error and so the greater the precision .
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With respect to the MLE procedurejust described for the Rasch model, Ronald Fisher proved
that as long as sample size is reasonably large, the standard error of a ML estimate is well estimated
by the inverse negative square root of the second derivative of the likelihood function .

Fisher also proved that replicates of a MLE will, with sufficiently large sample size, have a
normal distribution with expected value equal to the parameter itselfandwith astandard deviation equal
to this standard error. We will use this result to set confidence limits on our MLE's.

The second derivative of the likelihood, which served as ascaling factor for Newton's method,
now plays an important statistical role . It gives us the standard errors for our estimates.

Thus from Equations 15.10 and 15.14

L-I -v2

`

	

~Y,
NQ

	

2.5 / N112
aDi aDi

	

r r ri

[ -a ( aK

	

L

	

-1/2

SE(Br ) =

	

aBr

	

aBr

	

Qri

	

.`. 2.5 / L__

	

_

	

l2
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15.21

15.22

These standard errors are determined by substituting into Pi = exp(Br -Di ) / [l + exp(Br -DJ]

the converged values of the Br and Di estimates and finding Qri = Pri (1- Pri ) .

Item calibration andperson measurement is now complete . Here is a summary of the results of
this MLE.

A set ofL itemsestimates Di is obtained whose sumhasbeen set to zero so that the measuring
system under construction hasbeen centered on the calibrations of these test items. Some values will
be negative, indicating relatively easy itemsand some will be positive, indicating relatively hard items.

Associated with each of the Di estimates is its estimated standard error . We will see that Di 's
with values far from the sample ofpersonshave relatively large standard errors and that standarderrors
get smaller (and henceitems more precisely estimated) as we get closer to items with Di values near
the Br values ofthe majority ofthe persons. This is aconsequenceofthe formula for the standard error

in Equation 15.21 . When Di is equal to Br , thevalueof Pri is 0 .5 andso Qr; is0.25, its maximumpossible

value . This is where the standard error is nearest to its theoretical minimum of 2 / N'/z .

Equation 15.22 shows thewaythe standard error of Br is a function ofthenumber of itemsnear
thatBr. The standard errors ofthe person abilities depend on how many ofthe item difficulties are near
the location ofthat person . Themore items nearthe person, the smaller the standard error ofthe measure.
In a test which is well centered on its target groupwe wouldexpect the standard errors ofperson abilities
to be symmetric around acentralBnear zero, corresponding to about half the items correct, andthat these
standard errors would be large at both ends of our variable line and get smaller towards the center .



Since MLE produces values for all scores r, for r= 1 to r=L- 1, we will have ability estimates
and standard errors for all possible scores, even when, in the calibrating sample, there were no persons
who actually obtained a particular score .
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