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PREFACE

This is a book about constructing variables and making measures. We begin by outlining 
the requirements that a number must meet before it qualifies as a “ measure”  of something. Our 
requirements for measurement may seem stringent, but they are not new. They characterize 
all the instances of useful scientific measurement that we have been able to find. We suspect 
that their neglect by social scientists has stemmed from the belief that such requirements can 
never be met in social science research. We do not share this belief. When the basic re-
quirements of the method we describe are approximated in practice, they open the way to 
measuring systems which enable objective comparisons, useful predictions and the construction 
of firm bases for the study of psychological development.

The first requirement for making good measures is good raw material. When you construct 
a variable for yourself, you will have some control over the data you collect. Sometimes, 
however, the data you work with will be brought to you by someone else, and you will have 
to do your best with whatever you get. In either case, the materials you work with will have 
been gathered with a particular purpose in mind. At the heart of this purpose will be the 
intention to make comparisons along a particular line of inquiry. To achieve this the data must 
contain the possibility of a single variable along which persons can be measured.

We recommend beginning with a careful examination of the data. In Chapter 2 we show 
you a set of data which was sent to us. We lay it out and examine it from a variety of 
angles. Useful questions to ask at this stage are: Does the researcher have a clear idea of 
what he wants? Is this reflected in the data he has collected? Do these data seem to add up 
to something? Can we imagine constructing a single variable from them? An experienced 
eye is helpful: common sense is essential.

We will show you some techniques that we have developed for inspecting data. What we 
look for are warps and flaws which could make the construction of a variable difficult, and 
knot holes which may make some data useless. Sometimes data is too extensive to permit the 
detailed examination we carry out in Chapter 2, but it is always preferable to pinpoint potential 
problems at the beginning rather than stumbling over them later. No matter how good our 
tools, or how experienced we are in building variables and making measures, if our data are 
inadequate, then we will be unable to make useful measures from them.

In Chapter 3 we describe some models for measuring. These are the tools we use to build 
variables and make measures. We will show you five different measurement models, each of 
which has been developed for a particular type of data. The model you use will depend on 
how the data you are working with have been collected and what they are intended to con-
vey. The five models are members of a family of models which share the same basic struc-
ture. There are other models in the literature, but in our work we insist on using members 
of this particular family because only these models are capable of meeting our standards for 
measurement.
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Chapter 4 shows you how to use these models to get results. We describe four different 
estimation procedures. The one you use will depend on your purpose, the nature of the data 
you are working with and how you do your computing. The first procedure PROX is simple 
and convenient and does not require a computer. While PROX does not take full advantage 
of the capabilities of these models, the results it gives are good enough for many applica-
tions. The second procedure PAIR is convenient if your data are incomplete. It can help 
you to make the best use of the fragments of data you do have. The third procedure CON 
makes full use of the capabilities of these models but incurs the heaviest computational load 
and can incur computational problems when attempted with large numbers of items. The 
fourth procedure UCON is the one we use routinely. Its results are indistinguishable from 
those of CON, and we have found it fully effective with the variety of data we have examined.

The last and perhaps most important phase in the construction of a variable is its quality 
control. We take this up in Chapter 5. The first question we ask of our analysis is: Have 
we succeeded in defining a direction? The “ separation” index we describe in Chapter 5 can 
be used to assess the extent to which items and persons have been separated along a common 
line. Only if items are well separated will we be able to tell whether we have succeeded in 
defining a variable. Only if persons are well separated will we be able to identify and study 
individual differences along the variable which the items define.

Once we have established that we have built something of potential utility, the next question 
is: Does the variable we have built make sense? You will want to inspect the finished product 
to see if it makes sense to you. If you are building a variable for somebody else, the real test 
will come when you present them with the results of your efforts. Do they recognize the 
variable you have constructed as the variable which they hoped would emerge from the data 
they collected? Have the pieces come together in a way that makes sense to them?

It is essential at this stage to identify flaws which could limit the utility of the variable or 
the validity of the measures made with it. We will describe some procedures for identifying 
and summarizing misfit. What we are looking for are weak spots in the construction—items 
which do not contribute to the definition of a coherent and useful variable, and persons who 
have not used these items in the way that was intended. We will analyze the response patterns 
of some persons with unusual or inconsistent responses, and discuss some frequently encoun-
tered problems, like differences in "response set”, which you may need to watch for in your 
work.

Finally, it is important to investigate the extent to which the tentative variable is useful in 
general: the extent to which its utility can be maintained over time and in other contexts. We 
outline some techniques for comparing and monitoring the performances of items over time 
and from group to group.

In Chapters 6, 7, 8 and 9 we illustrate the use of these techniques by applying them to four 
quite different data sets. The data we analyze were collected to measure attitudes towards 
drug use, fear of crime, knowledge of elementary physics and the development of prekinder-
garten children. We offer these four examples to help you see how our methods might be 
used.

This book has its roots in the measurement philosophy of Georg Rasch, our foundation 
and guiding star. It was born in David Andrich’s pioneering work on the analysis of rating
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scales, and nourished in Geoff Masters' doctoral dissertation. The analysis of partial credit 
data was original with Geoff.

The kind of work we discuss leans heavily on computing. We are deeply indebted to 
Larry Ludlow for his many valuable contributions to our main computer program, c r e d i t .

The companionship, constructive criticism and creative participation of able colleagues 
has played an especially important part in our work. We are particularly grateful to our MESA 
colleagues Richard Smith, Tony Kalinowski, Kathy Sloane and Nick Bezruczko. Bruce Chop- 
pin and Graham Douglas helped us to make the writing clearer and the algebra more 
correct. The beautiful graphs were constructed by Mark Wilson. Our opportunity to do this 
work was greatly enlarged by generous financial support from the Spencer Foundation and the 
National Institute of Justice.

Benjamin D. Wright 
Geofferey N. Masters

The University o f  Chicago 
January 31, 1982
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1 ESSENTIALS FOR MEASUREMENT

1.1 INVENTING VARIABLES

Science marches on the invention of useful schemes for thinking about experience. The 
transformation of experience into useful plans for action is facilitated by the collection of 
relevant observations and their successful accumulation and condensation into objective mea-
sures. Measurement begins with the idea of a variable or line along which objects can be 
positioned, and the intention to mark off this line in equal units so that distances between points 
on the line can be compared.

The objects of measurement in this book are persons, and we call the numbers we derive 
for them “ measures” . A person’s measure is his estimated position on the line of the varia-
ble. The instruments of observation are questionnaire and test items, and we call the numbers 
we derive for them “ calibrations” to signify their instrumental role in the measuring pro-
cess. An item’s calibration is its estimated position on the line of the variable along which 
persons are measured. Persons are measured and items are calibrated on the variable which 
they work together to define.

The construction of a variable requires a systematic and reproducible relation between 
items and persons. Because items are accessible to invention and manipulation in a way that 
persons are not, it is useful to think of a variable as being brought out by its items and, in that 
sense, defined by them. This book is about how to construct variables and how to use them 
for measuring. While we confine ourselves to persons answering items, the methods we 
develop to calibrate and measure are quite general and can be applied to any occasion for 
measurement.

Variables are the basic tools of science. We use variables to focus, gather and organize 
experience so that objective comparisons and useful predictions can be made. Because we 
are born into a world full of well-established variables it can seem that they have always existed 
as part of an external reality which our ancestors have somehow discovered. This idea of 
science as the discovery of reality is popular. But science is more than discovery. It is also 
an expanding and ever-changing network of practical inventions. Progress in science depends 
on the creation of new variables constructed out of imaginative selections and organizations 
of experience.

The invention of a variable begins when we notice a pattern of related experiences and 
have an idea about these experiences which helps us to remember their pattern. If the idea 
orients us to more successful action, we take it as an “ explanation” of the pattern and call it 
a theory. The particular pattern which first intrigued us becomes incidental, and the idea 
becomes a formula for an idealized pattern embodying our theory. Variables are constructed 
by a step-by-step process, from casual noticing through directed experience and orderly thinking 
to quantification. This book describes a method for constructing variables and making mea-
sures.

1
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Many of the criticisms and questions that have appeared about attitude [as well 
as mental and psychological] measurement concern the nature of the funda-
mental concepts involved and the logic by which measurements are 
made. . . One of the most frequent questions is that a score on an attitude 
scale, let us say the scale of attitude toward God, does not truly describe the 
person’s attitude. There are so many complex factors involved in a person’s 
attitude on any social issue that it cannot be adequately described by a simple 
number such as a score on some sort of test or scale. This is quite true, but 
it is also equally true of all measurement.

The measurement of any object or entity describes only one attribute of the 
object measured. This is a universal characteristic o f all measurement. When 
the height of a table is measured, the whole table has not been described but 
only that attribute which has been measured. Similarly, in the measurement 
of attitudes, only one characteristic of the attitude is described by a measure-
ment of it.

Further, only those characteristics of an object can be measured which can be 
described in terms of “ more” or “ less” . Examples of such description are: 
one object is longer than another, one object is hotter than another, one is 
heavier than another, one person is more intelligent than another, more educated 
than another, more strongly favorable to prohibition, more religious, more 
strongly favorable to birth control than another person. These are all traits 
[i.e., variables] by which two objects or two persons may be compared in terms 
of “ more” or “ less” .

Only those characteristics can be described by measurement which can be 
thought of as linear magnitudes. In this context, linear magnitudes are weight,, 
length, volume, temperature, amount of education, intelligence, and strength 
of feeling favorable to an object. Another way of saying the same thing is to 
note that the measurement of an object is, in effect, to allocate the object to 
a point on an abstract continuum. If the continuum is weight, then individuals 
[the objects of measurement] may be allocated to an abstract continuum of 
weight, one direction of which represents small [less] weight while the opposite 
direction represents large [more] weight. Each person might be allocated to 
a point on this continuum with any suitable scale which requires some point 
at which counting begins, called the origin, and some unit o f measurement in 
terms of which the counting is done.

The linear continuum which is implied in all measurement is always an ab-
straction. For example, when several people are described as to their weight, 
each person is in effect allocated to a point on an abstract continuum of 
weight. All measurement implies the reduction or restatement of the attribute 
measured to an abstract linear form. There is a popular fallacy that a unit of 
measurement is a thing—such as a piece of yardstick. This is not so. A unit 
o f measurement is always a process o f some kind which can be repeated without 
modification in the different parts o f  the measurement continuum.

Not all of the characteristics which are conversationally described in terms of 
“ more” or “ less” can actually be measured. But any characteristic which 
lends itself to such description has the possibility of being reduced to mea-
surement. (Thurstone 1931, 257)



1 / ESSENTIALS FOR M EASUREM ENT 3

The basic requirements for measuring are:
1) the reduction of experience to a one dimensional abstraction,
2) more or less comparisons among persons and items,
3) the idea of linear magnitude inherent in positioning objects along a line, and
4) a unit determined by a process which can be repeated without modification over the 

range of the variable.

The essence of the process “ which can be repeated without modification” is a theory or 
model for how persons and items must interact to produce useful observations. This model 
for measuring is fundamental to the construction of measures. It not only specifies how a unit 
might be defined, but also contains the means for maintaining this unit.

1.2 CONSTRUCTING OBSERVATIONS

The idea of a variable implies some one kind o f  thing which we are able to imagine in 
various amounts. Underlying the idea of a variable is the intention to think in terms of “ more” 
and “ less” , that is, the intention of order. Before we can measure we must first identify events 
which we believe are indicative of “ more”  of the variable. These events are then interpreted 
as steps in the intended direction and are looked for, noted and counted.

Measurement begins with a search for the possibility of order and an attempt to inject this 
order into organized experiences. Experiments are devised and carefully implemented to bring 
out how well the capacity, strength or “ amount” in a person fares against the resistance, 
strength or “ amount” in an item. The observational procedure operationalizes the idea of 
order and provides the basic ingredients from which measures are made.

If the observation format treats each item as one step in the intended direction, as in 
examination questions marked right or wrong, then we look to see whether the person has 
completed (or failed) that one step. For a series of one-step items we ask: How often have 
indicative events occurred? If the observation format identifies several possible levels of 
performance on an item, as in rating scales and examination questions which allow partial 
credit, then we ask: Which of these ordered performance levels has been reached? How 
many steps have been taken in the intended direction? In either case, we count the completed 
steps as independent indications of the relative strengths of (amounts in) the persons and items.

The steps within an item, being perfectly ordered by definition, are completely depen-
dent. To have reached the third step means to have reached and passed through the first and 
second steps. But the items themselves are usually designed and deployed so that they can 
function independently of one another and responses to them are expected to be independent 
in most item analyses. Whether this is approximated in practice, of course, depends on the 
circumstances and on the success of our efforts to obtain and maintain an approximately uniform 
level of independence.

1.3 MODELLING OBSERVATIONS

For observations to be combined into measures they must be brought together and con-
nected to the idea of measurement which they are intended to imply. The recipe for bringing 
them together is a mathematical formulation or measurement model in which observations and
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our ideas about the relative strengths of persons and items are connected to one another in a 
way that

1) absorbs the inevitable irregularities and uncertainties of experience systematically 
by specifying the occurrence of an event as a probability rather than a certainty,

2) preserves the idea of order in the structure of the observations by requiring these 
probabilities to be ordered by persons and items simultaneously, as in the cancellation axiom 
of conjoint measurement, and

3) enables the independent estimation of distances between pairs of items and pairs of 
persons by keeping item and person parameters accessible to sufficient estimation and inferential 
separation.

The uncertainties of experience are handled by expressing the model of how person and 
item parameters combine to produce observable events as a probability. In formulating the 
connection between idea and experience we do not attempt to specify exactly what will hap-
pen. Instead, we specify the probability of an indicative event occurring. This leaves room 
for the uncertainty of experience without abandoning the construction of order.

The idea of order is maintained by formulating measurement models so that the probabilities 
of success define a joint order of persons and items. The stronger of any pair of persons is 
always expected to do better on any item, and the weaker of any pair of items is always 
expected to be better done by any person.

This is the probabilistic version of

If a person endorses a more extreme statement, he should endorse all less 
extreme statements if the statements are to be considered a scale. . . .We shall 
call a set of items of common content a scale if a person with a higher rank 
than another person is just as high or higher on every item than the other 
person. (Guttman 1930, 62)

A person having a greater ability than another- should have the greater prob-
ability of solving any item of the type in question, and similarly, one item being 
more difficult than another one means that for any person the probability of 
solving the second item correctly is the greater one. (Rasch 1960,117)

If our expectations for “ more”  and “ less”  do not fulfill this basic requirement of order, and 
hence do not satisfy the cancellation axiom of additive conjoint measurement, they lose their 
meaning, and the intended variable loses its quantitative basis. This basic principle of order-
liness is the fundamental requirement for measurement.

The appearance of person and item parameters in a measurement model in a way which 
allows them to be factored is essential if measures are to have any generality. The measurement 
model must connect the observations and the parameters they are supposed to indicate in a 
way which permits the use of any selection of relevant observations to estimate useful values 
for the parameters. This can be done effectively only when the formulation relates the pa-
rameters so that person parameters can be conditioned out of the model when items are 
calibrated to obtain sample-free item calibrations, and item parameters can be conditioned out 
when persons are measured to construct test-free person measures.
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For a quantitative comparison to be general, it must be possible to maintain its quantitative 
basis beyond the moment and context of its realization. It must be possible to compare 
measures from time to time and place to place without doubting the status of their values and 
without wondering whether the numbers have lost their meaning. The method by which 
observations are turned into calibrations and measures must contain the possibility of invariance 
over a useful range of time and place. It must also provide the means for verifying that a 
useful approximation to this invariance is maintained in practice.

Measures of persons must have meaning extending beyond the items used to obtain 
them. Their “ meaning” must include not only the items used, but also other items of the same 
sort. If this is not so, the numbers intended as measures are merely arbitrary labels of a 
temporary description.

The idea of a variable implies a potential innumerability of relevant examples which stand 
for its generality. These examples must specify an expected order which defines “ more”  and 
“ less”  along one common line and, so, gives the variable its operational definition. The 
implementation of a variable requires the construction and observation of enough actual ex-
amples to confirm the expected order and document the basis for inference.

One of the first requirements of a solution [to the problem of constructing a 
rational method of assigning values for the base line of a scale of opinion] is 
that the scale values of the statements of opinion must be as free as possible, 
and preferably entirely free, from the actual opinions of individuals or 
groups. If the scale value of one of the statements should be affected by the 
opinion of any individual person or group, then it would be impossible to 
compare the opinion distributions of two groups on the same base. (Thurstone 
1928b, 416)

The invariance of measures must be such that we expect to obtain about the same values 
for a particular measure no matter which items we use, so long as they define the same variable, 
and, no matter whom else we happen to have measured. The measures must be “ test-free” 
in the sense that it must not matter which selection of items is used to estimate them. They 
must be “ sample-free”  in the sense that it must not matter which sample of persons is used 
to calibrate these items. The usefulness of person measures, and the item calibrations which 
enable them, depends on the extent to which persons and items can be worked together to 
approximate this kind of invariance.

1.4 BUILDING GENERALITY

1.4.1 Frames of Reference

Scientific ideas are intended to be useful. For ideas to be useful, they must apply over 
some range of time and place; that is, over some frame of reference. The way we think things 
are must seem to stay the same within some useful context. We must be able to think that 
a person’s ability remains fixed long enough for us to observe it. We must be able to imagine 
that we can observe some items attempted, count the steps successfully taken, estimate a 
measure from this score, and have this estimate relevant to the person for a useful span of 
time. The difficulties of the items must also remain fixed enough for us to use them to define 
a variable, compare abilities with it, measure differences and quantify changes.
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1.4.2 Continuity

In our thoughts about variables and measures on them we are counting on being able to 
approximate a limited but reproducible continuity. We know that this continuity is not 
real. We know that we can easily obtain experiences which falsify any continuity we might 
think up. But we also know that we only need to approximate continuity and be able to 
supervise its approximation to make good use of it.

All our thinking about variables and measures on them depends on the experienced utility 
of assuming that a semblance of continuity can be constructed and maintained. The practice 
of science relies on demonstrations that specified measures and the calibrations on which they 
are based can be reproduced whenever necessary and shown to be invariant enough to ap-
proximate the continuity we count on to make our thoughts about amounts useful. Reproduction 
is the way continuity is verified. Reproducibility depends on the possibility of replication.

1.4.3 Objectivity, Sufficiency and Additivity

The verification of continuity through reproduction depends on being able to estimate 
differences in item and person strengths independently of one another. The best we can do 
is to estimate differences in strengths between pairs of items, pairs of persons, or between an 
item and a person. But inferential separation among these estimations of differences is enough 
to support independent calibrations of items and measures of persons. The set of differences 
need only be anchored at a convenient origin in order to free the separate estimates from 
everything except their differences from that origin.

The separation of item and person parameters must be provided by the mathematical form 
of the measurement model. This means that the way person and item parameters are modelled 
to influence observations must be factorable so that conditional probabilities for the differences 
between any pair of parameters can be written in terms of observations. This is the only 
structure which supports the use of non-identically distributed observations to estimate dis-
tances between pairs of parameters.

Generally, only part of the statistical information contained in the model and 
the data is pertinent to a given question, and one is then faced with the problem 
of separating out that part. The key procedures for such separations are mar-
gining to a sufficient s ta tis tic  and conditioning on an ancillary  
statistic. (Bamdorff-Nielsen 1978, 2)

The work by G. Rasch on what he has called measurement models and specific 
objectivity should also be mentioned as a very considerable impetus in the field 
of inferential separation. (Bamdorff-Nielsen 1978, 69)

R.A. Fisher (1934) shows that separability is the necessary and sufficient condition for 
“ sufficient” statistics. Rasch identifies separability as the basis for the specific objectivity 
essential for scientific inference. In order that the concepts of person ability and item difficulty 
could be at all considered meaningful, there must exist a function of the probability of a correct 
answer which forms an additive system in the parameters for persons and items such that the 
logit correct equals the difference between person ability and item difficulty (Rasch 1960,118- 
120).
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Rasch measurement models are based on the nuclear element

P{x;0,8} = exp (0 -8 ) / [ l+ ex p (0 -8 )]

with statistics r for 0 and S  for 8. The appearance of 0 and 8 in linear form enables P{x;8|r} 
to be non-informative concerning 0 and P{x;0|5} to be non-informative concerning 8. It follows 
that r is sufficient for x  concerning 0 but ancillary concerning 8, while S is sufficient for x 
concerning 8 but ancillary concerning 0. As a result, margining to r and S estimates 0 and 
8 sufficiently while conditioning on S or r enables their inferential separation (Barndorff-Nielsen 
1978, 50).

Luce and Tukey (1964) call this relationship between parameters and observations “ ad-
ditivity”  and identify it as the sine qua non of measurement:

The essential character of what is classically considered . . . the fundamental 
measurement of extensive quantities is described by an axiomatization for the 
comparison of effects of (or responses to) arbitrary combinations of “ quan-
tities”  of a single specified kind . . . Measurement on a ratio scale follows 
from such axioms. . . The essential character of simultaneous conjoint mea-
surement is described by an axiomatization for the comparison of effects of 
(o r re sp o n ses  to) pa irs  form ed from  tw o specified kinds o f 
“ quantities” . . . Measurement on interval scales which have a common unit 
follows from these axioms; usually these scales can be converted in a natural 
way into ratio scales.

A close relation exists between conjoint measurement and the establishment 
of response measures in a two-way table, or other analysis-of-variance situa-
tions, for which the “ effects of columns” and the “ effects of rows” are ad-
ditive. Indeed, the discovery of such measures, which are well known to have 
important practical advantages, may be viewed as the discovery, via conjoint 
measurement, of fundamental measures of the row and column variables. (Luce 
and Tukey 1964, 1)

Seeking response measures which make the effects of columns and the effects 
of rows additive in an analysis-of-variance situation has become increasingly 
popular as the advantages of such parsimonious descriptions, whether exact 
or approximate, have become more appreciated. In spite of the practical 
advantages of such response measures, objections have been raised to their 
quest, the primary ones being (a) that such “ tampering” with data is somehow 
unethical, and (b) that one should be interested in fundamental results, not 
merely empirical ones.

For those who grant the fundamental character of measurement axiomatized 
in terms of concatenation, the axioms of simultaneous conjoint measurement 
overcome both of these objections since their existence shows that qualitatively 
described “ additivity”  over pairs of factors of responses or effects is just as 
axiomatizable as concatenation. Indeed, the additivity is axiomatizable in terms 
of axioms that lead to scales of the highest repute: interval and ratio scales.

Moreover, the axioms of conjoint measurement apply naturally to problems of 
classical physics and permit the measurement of conventional physical quan-
tities on ratio scales.
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In the various fields, including the behavioral and biological sciences, where 
factors producing orderable effects and responses deserve both more useful 
and more fundamental measurement, the moral seems clear: when no natural 
concatenation operation exists, one should try to discover a way to measure 
factors and responses such that the “effects” o f different factors are addi-
tive. (Luce and Tlikey 1964, 4)

Additivity means that the way the person and item parameters enter into the modelled
X

production of the observed behavior can be linear as in (J„ -  8,- -  ty and X  On _  8«) or
j —0

even a,0n, since loga,0„ = loga, + logP„, but not as in a,<pn-8 ,) or (0„ -  8, -  ym). This 
is because the estimates of person ability 0„ or item difficulty 8,- in these latter expressions 
cannot be separated from the variable scaling factor a,- (as is the case when item discriminations 
are parameterized) or the interaction term *ym-.

Separability means that the connection between observations and parameters in the mea-
surement model can be factored so that each parameter and its associated statistics appear as 
a separate multiplicative component in the modelled likelihood of a suitable set of data.

Specific objectivity means that the model can be written in a form in which its parameters 
are linear in the argument of an exponential expression so that they can be sufficiently estimated 
and conditioned out of the estimation of other parameters.

The Rasch model is a special case of additive conjoint measurement, a form 
of fundamental measurement. . . A fit of the Rasch model implies that the 
cancellation axiom will be satisfied. . . It then follows that items and persons 
are measured on an interval scale with a common unit. (Brogden 1977, 633\

1.5 QUANTIFYING COMPARISONS

The purpose of measuring is to derive numbers for objects which enable quantitative 
comparisons that can be maintained over a useful range of generality. The idea of measurement 
contains the image of a single line of inquiry, one dimension, along which objects can be 
positioned on the basis of observations which add up. It is taken for granted that the obser-
vations are relevant encounters which elicit symptoms of the variable intended and can be 
accumulated into reproducible indications of the objects’ positions.

1.5.1 Arithmetic and Linearity

In order for numbers to represent amounts and enable quantitative comparisons, we must 
construct and maintain a linear scale on which the difference between persons A and B appears 
approximately the same whether seen through hard, medium or easy items. And, also, on 
which the distance between items I  and J  appears approximately the same whether revealed 
by able, average or unable persons. Otherwise differences cannot be compared, because 
subtraction does not hold, rates of development cannot be determined, and the quantitative 
study of psychological growth and change is impossible.
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Linearity requires that the way observations are used to obtain numbers preserve not only 
the order of the objects and instruments, but also the order of their differences. If the pairwise 
differences of three pairs of objects (or instruments) are AB, CD and EF, and if AB>CD  and 
CD>EF, then it must be reasonable to expect AB>EF. The linearity we count on when we 
use measures and calibrations depends on a method for transforming observations into numbers 
which preserves this order of differences.

1.5.2 Origins and Zero Differences

The idea of a true origin or “ beginning” , the place on a line before which the variable does 
not exist, is beyond experience by definition. Experienced origins are inevitably arbitrary 
because the empirical identifications of such points are always circumscribed by time and place, 
are always temporary and are always improved by experience. As the search for an “ absolute 
zero” temperature illustrates, new demonstrations inevitably displace “ origins” thought to be 
absolute. In practice, origins are convenient reference points. The west counts time in anno 
domini. Others count from other “ beginnings” . Origins are often chosen to avoid negative 
numbers or for dramatic emphasis as in above ground and below freezing.

If origins are arbitrary, what about zero differences? Could a zero difference provide a 
non-arbitrary zero-point? When we observe an identity have we defined a zero? We might 
define “ identity” as the observation of the “ same” performance pattern. But this would not 
hold. We can always imagine more observations which contradict us. If we maintain contact 
with the persons or items concerned we will always encounter new observations which doc-
ument their difference. Additional observations will eventually falsify every identity thus 
destroying any origin based on a zero-difference. We can approximate a zero difference, but 
we can never demonstrate a perfect one. The absolute zero of “ no difference” is just as 
beyond experience as the absolute zero of “ beginning” .

Yet the idea of continuity contains a point where, as ability increases past difficulty, the 
difference 0 — 8 passes through zero. By increasing the number of observations we can ap-
proximate this idea of a zero difference to any desired degree. While its observation can only 
be approximate, the idea of a zero difference is an irresistable consequence of the idea of 
continuity, and it is the foundation for obtaining a “ measure” of an object from calibrated 
instruments. The way we obtain an object’s measure is by calculating the “ calibration” of 
an imaginary instrument which would have a zero difference from the object. In practice, of 
course, we set an origin somewhere convenient and stick to it so that we have a place from 
which to start counting.

1.5.3 Units and Least Observable Differences

To measure off distances, to compare differences and to determine rates of change we need 
to be able to do arithmetic with the results of our observations. To be able to do arithmetic 
we need to be able to count, and to count we need units. But there are no natural units. There 
are only the arbitrary units we construct and decide to use for our counting.

Rasch models define response probabilities from combinations of

rr=  exp \ 1(1 + exp \)
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The logit Iog['ir/( 1 -  it)] = \  is the probability unit for X defined by the modelled process. This 
is the unit which the Rasch process keeps uniform over the range of observations.

The decimal system gives us freedom as to what a one count shall be. But we use integers 
to count with. We speak of distances as so many of this or that unit. For this it is natural 
to choose integers which can represent by convention either the least amount we can observe 
conveniently e.g., “ one red cent” (a choice which depends on our observational technique), 
or the least amount we are interested in knowing about e.g., “ keep the change” (a choice which 
depends on our intentions).

This ends our discussion of the essentials of measurement. The measurement models we 
use in this book are constructed from “ the Rasch model” for dichotomous observations and 
belong to the family of models with separable person and item parameters. These are the only 
models known to us which meet the basic requirements for measurement.



2 EXAMINING DATA

In this chapter we examine the data that will be used to illustrate our measurement method 
in Chapters 4 and 5. Our purpose is to introduce some general techniques for inspecting data, 
and to set the stage for our subsequent statistical analysis. The data were collected by the 
Cleveland Museum of Natural History to measure the attitudes of school children toward 
science.* We will use these data to try to build a liking-for-science variable along which 
children's attitudes to science can be measured, and then we will attempt to measure the 
attitudes of seventy-five school children.

The questions that will guide us are: Can we build a liking-for-science variable from these 
data? Do some of the data appear unsuitable for this task? Do the questionnaire items seem 
to define a useful range of attitudes toward science? Are the responses of the seventy-five 
children consistent with the ordering of these items? Have any children given unexpected or 
erratic responses? Our examination of the liking-for-science data is detailed and elementary 
because we intend to use the observations that we make in this chapter as background for the 
statistical analyses in Chapters 4 and 5.

2.1 AN ATTITUDE TO SCIENCE VARIABLE

One goal of science classes and museum programs is to develop a liking for science. These 
programs hope to cultivate children's curiosity and to encourage their eagerness to explore in 
ever more organized and constructive ways. If we are willing to think of each child as having 
some level of liking for science at any given time, and of children as varying in their amount 
of this liking, then each child's liking for science can be thought of as a point on a line of 
increasingly positive attitudes as in Figure 2.1. Children who don’t like science are located 
to the left on this line, and children who like science a lot are located to the right. The growth 
or decay of a child's liking for science is followed by charting his movement along this line.

FIGURE 2.1
A “ LIKING-FOR-SCIENCE” VARIABLE

Less liking 
for science

Child

More liking 
for science

* We are grateful to Julian Mingus for making these data available to us.

11
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Like all variables, this “ liking-for-science” line is an abstraction. Whether it is useful to 
think of children as having positions on a single liking-for-science variable depends first on our 
ability to collect observations which support such an idea, and second on the utility of the 
attitude measures we then make. Our “ liking-for-science” line will be justified if the measures 
it leads to are useful for following changes in liking for science, identifying the kinds of science- 
related activities individual children are ready to enjoy, selecting appropriate classroom activ-
ities, or evaluating the effectiveness of programs intended to develop children’s liking for 
science.

To build such a line we must find a way to collect data that could reflect children’s liking 
for science. One possibility is to think up a range of activities which represent various degrees 
of interest in science, and then to ask children which of these activities they like. An activity 
which should be easy to like is “ Watching monkeys”. Slightly harder to like might be“ Observing 
a monkey to see what it eats” , and harder still, “ Consulting an encyclopedia to find out where 
monkeys come from”. If we can develop a range of activities which seem to represent in-
creasing levels of interest in science, then we may be able to mark out a line of increasingly 
positive attitude. Once activities are ordered along such a line, each child’s position on the 
line can be interpreted in terms of the kinds of activities that child can be expected to like and 
dislike.

2.2 THE SCIENCE QUESTIONNAIRE

The Cleveland Museum of Natural History assembled twenty-five science-related activities 
for its study of children’s liking for science. Some of these, like Activity 19 “ Going to the 
zoo”, are easy to like. Others, like Activity 6 “ Looking up a strange animal or plant in an 
encyclopedia” , require more effort and should be liked only by children who are motivated by 
a general liking for science. A list of these activities in the order in which they were admin-
istered appears in Figure 2.2.

2.3 HOW JUDGES ORDER THE SCIENCE ACTIVITIES

When the items in an attitude questionnaire are examined for their intention, it should be 
possible to anticipate their ordering along the variable they are supposed to define, and in this 
ordering it should be possible to “ see” a line of increasing attitude. If we can order the 
twenty-five science activities from easiest-to-like to hardest-to-like, then we should be able to 
recognize in this ordering the liking-for-science variable that they are intended to specify.

One approach to laying out a variable of increasing attitude is to ask a group of judges to 
arrange the questionnaire items in order of increasing intensity. F.H. Allport developed scales 
in this way in 1925 to measure attitudes toward the prohibition of alcohol and the Ku Klux 
Klan. Allport wrote a set of statements for each scale and asked six judges to order these 
statements along the attitude variable they seemed to define. Then he attempted to measure 
the attitudes of college students toward each issue by having them mark the statement on each 
scale which came closest to expressing their own attitude.

Allport’s study sparked Thurstone’s interest in attitude measurement and led to the con-
struction of a variety of attitude scales at the University of Chicago during the 1920’s and to 
a series of Thurstone papers on the possibility of measuring attitudes. Thurstone asked judges
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_________  FIGURE 2.2__________
THE SCIENCE QUESTIONNAIRE

1. Watching birds
2. Reading books on animals
3. Reading books on plants
4. Watching the grass change from season to season
5. Finding old bottles and cans
6. Looking up a strange animal or plant in a dictionary or encyclopedia
7. Watching the same animal move many days
8. Looking in the cracks in the sidewalks for small animals
9. Learning the names of weeds

10. Listening to a bird sing
11. Finding out where an animal lives
12. Going to a museum
13. Growing a garden
14. Looking at pictures of plants
15. Reading stories of animals
16. Making a map
17. Watching animals to see what plants they eat
18. Going on a picnic
19. Going to the zoo
20. Watching bugs
21. Watching a bird make a nest
22. Finding out what different animals eat
23. Watching a rat
24. Finding out what flowers live on
25. Talking with friends about plants

not only to order statements, but also to sort them into piles which appeared to be equally 
different in intensity. Thurstone recognized the importance of being able to express attitude 
measures on a scale with a “ defensible unit of measurement” , and hoped that “ equal appearing 
intervals”  would provide a rational unit for his scales (Thurstone 1928a, 542).

To see whether we could establish agreement on the ordering of the twenty-five science 
activities in Figure 2.2, we asked nine adults to order them from easiest-to-like to hardest-to- 
like. Then we asked the same nine adults to group the twenty-five ordered activities into 
eleven “ equally spaced” piles, placing the easiest-to-like activities in the first pile, and the 
hardest-to-like activities in the eleventh. Figure 2.3a shows the results of this sorting for some 
of the twenty-five activities.

The eight activities upon which there was most agreement are listed at the top of Figure 
2.3a. The nine judges agreed that Activity 9 “ Learning the names of weeds” was very hard 
to like. Five judges placed this activity in “ hardest-to-like” pile 11. The other four judges 
placed it in piles 9 and 10. The nine judges also agreed that Activity 18 “ Going on a picnic” 
was very easy to like. Eight judges placed this activity in “ easiest-to-like”  pile 1. The ninth 
judge placed it in pile 2. Listed between Activities 9 and 18 in Figure 2.3a are six other 
activities which the judges felt were not as hard to like as learning the names of weeds, but not 
as easy to like as going on a picnic.
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________  FIGURE 2.3a ________
----------------------------------- HOW NINE JUDGES ORDERED -----------------------------------

THE SCIENCE ACTIVITIES
M ED IA N  M ID RA N G E* O F

ACTIVITY E A S Y -T O -L IK E  H A R D -T O -L IK E  PL A C E M E N T  P L A C E M E N T S
N U M B ER  ACTIVITY I 2 3 4 5 6  7 8 9 10 I I

9 Learning the nam es o f  w eeds

7 W atching the sam e anim al 
m ove m any days

4  W atching the g rass change 
from  season  to  season

15 R eading s to ries o f  anim als

21 W atching a  bird m ake a  nest

I W atching birds

19 G oing to  the zoo

18 G oing o n  a  picnic

E A S Y -T O -L IK E  H A R D -T O -L IK E
I 2 3 4 5 6 7 8 9  10 I I

5  Finding old b o ttles and can s  X X X
X X

X X__________ X X

16 M aking a  m ap X X X X X X

23 W atching a  rat X X

X
X

X X 
X X

' M ID RA N G E =  Difference betw een 25th and 75th percentiles

There is less agreement among judges on some of these activities than on others. For 
example, while most judges placed Activity 7 “ Watching the same animal move many days” 
above pile 5, one judge felt that this was among the easiest activities to like, and placed it in 
pile 1. At the bottom of Figure 2.3a are the results for the three activities upon which there 
was least agreement.

While some judges felt that these three activities were easy to like, others felt that they 
were hard to like. Thurstone encountered this problem in 1928 when attempting to use judges'
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orderings to position statements along a line of increasingly positive attitudes toward the 
church. He referred to such statements as “ ambiguous” and deleted them from his ques-
tionnaire.

The medians and midranges of judges’ placements are shown on the right of Figure 
2.3a. The midranges for the eight activities at the top are relatively small, and so, the median 
placements for these eight activities provide a useful indication of their ordering along the 
science variable. But the large midranges for Activities 5, 16 and 23 at the bottom of Figure 
2.3a make the median placements for these three activities meaningless as indications of their 
locations among the other activities.

The relation between the median placement and midrange is plotted in Figure 2.3b for all 
twenty-five science activities. The eight least ambiguous activities are connected by a 
line. The three most ambiguous activities are circled. The fourteen activities not listed in 
Figure 2.3a are in the middle of the plot.

Our attempt to find a natural order in the twenty-five science activities on which persons 
examining them would agree has identified Activities 5, 16 and 23 as more ambiguous than the 
others. The fact that our nine judges had trouble agreeing on where these three activities 
stand among the others suggests that they may not belong on the same liking-for-science 
variable. It is essential that such activities be identified and deleted from the final question-
naire.

Ideally the scaling method should be designed so that it will automatically throw 
out of the scale any statem ents which do not belong in its natural 
sequence. (Thurstone 1928b, 417)

Our nine judges have provided us with an ordering of the twenty-five science activities 
which looks reasonable. But how general is this order? To what extent does this ordering 
of the activities reflect the idiosyncratic preferences of these nine judges? To construct a 
useful liking-for-science variable, we must be able to calibrate activities along a single line, and 
these calibrations must have a generality which extends beyond the particular persons used to 
obtain them.

If the scale is to be regarded as valid, the scale values of the statements should 
not be affected by the opinions of the people who help to construct it. This 
may turn out to be a severe test in practice, but the scaling method must stand 
such a test before it can be accepted as being more than a description of the 
people who construct the scale. At any rate, to the extent that the present 
method of scale construction is affected by the opinions of the readers who 
help to sort out the original statements into a scale, to that extent the validity 
or universality of the scale may be challenged. (Thurstone 1928a, 547-548)

2.4 HOW CHILDREN RESPOND TO THE SCIENCE ACTIVITIES

2.4.1 Choosing a Response Format

The first task in the construction of an attitude variable is to assemble a set of items which 
might work together to define one common line of inquiry. The second task is to choose a
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_________________  FIGURE 2.3b__________________
THE RELATION BETWEEN MEDIAN PLACEMENT 
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format for recording responses to these items. For the science questionnaire, one approach 
is to ask each child to indicate which of the twenty-five activities he likes. If a score of 1 is 
assigned for liking an activity and 0 for not liking it, then responses resemble scores on an 
achievement test and can be analyzed accordingly. An alternative, which seems to get at the 
same thing, is to ask each child which activities he dislikes. In general, however, these two 
approaches do not produce equivalent results. If we give a child a list of the twenty-five 
activities and ask him to mark the activities he likes, and then give him a second list of the 
same twenty-five activities and ask him to mark the activities he dislikes, the results will be 
equivalent only if every activity is marked on one and only one of these two lists.. Activities 
which are not marked on either list will be activities which this child neither likes nor dislikes.

A common practice for dealing with statements which are neither liked nor disliked in 
attitude questionnaires is to provide a “ neutral” alternative. But this practice has not been

Picnic Harder to Like
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universally accepted, and there has been extensive discussion of the misuse of the neutral 
category by respondents who do not wish to participate.

The constructors of the science questionnaire decided to provide a neutral response al-
ternative with the intention that it be used to express an attitude between liking and dislik-
ing. Children recorded their responses by drawing a mouth on a blank face alongside each 
activity. The alternatives offered are shown in Figure 2.4a.

2.4.2 The Science Data Matrix

Ordering Children’s Attitudes. Responses of seventy-five children to the twenty-five science 
activities are displayed in Figure 2.4b. This “ data matrix” is composed of 0’s (Dislike), l ’s 
(Not Sure/Don't Care) and 2’s (Like). There are seventy-five rows, one for each child, and 
twenty-five columns, one for each activity. Can we use the entries in this matrix to calibrate 
the twenty-five activities along a line of increasingly favorable attitudes to science, and to 
measure the attitudes of these seventy-five children on this line?

Each row of this matrix contains the responses of one child to the twenty-five activities 
in the science questionnaire. Each child is identified by a number on the left of the matrix. By 
summing across a child’s row of responses a score is obtained for that child. This score 
appears on the right of the matrix. The seventy-five children have been sorted so that the 
child with the highest score (Child 2, score = 50) is at the top, and the child with the lowest 
score (Child 53, score = 12) is at the bottom. From his row of responses at the top of Figure 
2.4b we see that Child 2 liked all twenty-five activities in this questionnaire. Child 53 at the 
bottom of the matrix liked only one activity and disliked fourteen. Children who like most 
activities make high scores on the questionnaire and appear at the top of the matrix. Children 
who dislike many of the activities make low scores and appear at the bottom.

Ordering the Science Activities. Each of the twenty-five columns in Figure 2.4b contains the 
responses of these seventy-five children to one activity. Each activity is identified by its

_________  FIGURE 2.4a__________
THE RESPONSE ALTERNATIVES

DISLIKE NOT SURE / DON’T CARE LIKE

0 1 2
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number at the top of the matrix. The entries in each column are summed down the matrix 
over the seventy-five children to obtain a score for that activity. These activity scores appear 
at the bottom of the matrix. They too have been sorted so that the easiest-to-like activity with 
the highest score (Activity 18, score = 145) is on the left of the matrix, and the hardest-to-like 
activity with the lowest score (Activity 5, score = 37) is on the right.

From the column of responses to Activity 18 on the left of the matrix we see that most of 
these seventy-five children liked “ Going on a picnic” . But Activity 5 on the right of the matrix, 
“ Finding old bottles and cans” , was liked by very few children, and disliked by most.

Investigating Unusual Activities. The upper left corner of Figure 2.4b contains the responses 
of high-scoring children to activities which are easy to like. These responses are almost all 
2’s. This is what we expect. Children who like most of these twenty-five activities should 
certainly like the ones that are easy to like. The lower right corner of Figure 2.4b contains 
the responses of low-scoring children to activities which are difficult to like. In this corner 
of the matrix 2’s are rare.

A triangular pattern of 2’s is the hallmark of the orderliness we seek. To bring out the 
structure in these data the l ’s and 0's have been removed and the remaining matrix of 2’s 
displayed in Figure 2.4c. Now the pattern of 2’s is obvious. The few activities that high- 
scoring children at the top of the matrix do not like are on the far right of the matrix, while the 
few activities that low-scoring children at the bottom do like tend to be on the far left. The 
triangular shape of this pattern is an indication that in general the activities are functioning 
together to define a single line of inquiry.

A closer examination of the pattern, however, reveals a few puzzles. If a particular 
activity defines the same dimension as the majority of activities, then there should be agreement 
between the responses children make to this activity and their scores on the questionnaire as 
a whole. Consider, for example, the column of responses given to Activity 3 “ Reading books 
on plants” . Twenty-six children gave a 2 to this activity. These twenty-six children are 
almost all at the top of the matrix. In fact, seventeen of the eighteen children who scored 
above 38 on the questionnaire gave a 2 to Activity 3, while none of the twenty-six children who 
scored below 28 gave it a 2. This is the type of response pattern we expect when a particular 
activity follows the same line of inquiry as the majority of activities.

Consider now responses to Activities 23 “ Watching a rat”  and 5 “ Finding old bottles and 
cans”  on the far right of the matrix. Eleven children gave a 2 to Activity 23. But they were 
not all high-scoring children. In fact, only three of these eleven children scored above 38 on 
the questionnaire, while six scored below 28. Low-scoring children appear to like watching 
a rat more than high-scoring children. Similarly, only two of the nine children who gave a 2 
to Activity 5 scored above 38, while five scored below 28. Low-scoring children also appear 
to like finding old bottles and cans more than high-scoring children.

The aim of our work with these data is to calibrate a sequence of activities along a line of
increasing liking for science. But first, we must establish whether these activities work together 
to define a single variable. If they do not, then our efforts to position all twenty-five activities
along a line in a useful way will be in vain.

The 2’s in the lower right corner of Figure 2.4c are unexpected responses. While we 
might not be surprised to find a few unlikely responses in this corner of the matrix, when they



FIGURE 2.4c
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Child Child
N um ber A ctiv ity  N um ber S core

18 /9 /2 /0 13 I I  21 2 15 / 24 22 17 6 14 3 25 16 9 7 8 4 2 0 23 5
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 SO

41 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 49
34 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 48
17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 47
50 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 46
45 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 45

7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 44
48 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 43
16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 43
25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 42
59 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 42
39 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 41
18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 41
56 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 40
57 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 40
23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 40
40 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 39
70 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 39
33 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 38
38 2 2 2 2 2 2 2 2 2 2 2 2 2 38
43 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 37
74 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 37
60 2 2 2 2 2 2 2 2 2 2 2 36
64 2 2 2 2 2 2 2 2 2 2 2 2 2 36
58 2 2 2 2 2 2 2 2 2 2 2 2 2 35
I I 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 35
22 2 2 2 2 2 2 2 2 2 35
51 2 2 2 2 2 2 2 2 2 2 2 2 2 34

3 2 2 2 2 2 2 2 2 2 2 34
63 2 2 2 2 2 2 2 2 2 2 2 2 34

8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 33
*  71 2 2 2 2 2 2 2 2 2 2 2 2 2 2 33

69 2 2 2 2 2 2 2 2 2 2 2 2 33
19 2 2 2 2 2 2 2 2 2 2 2 2 32
42 2 2 2 2 2 2 2 2 2 2 32
24 2 2 2 2 2 2 2 2 2 2 2 32
31 2 2 2 2 2 2 2 31
65 2 2 2 2 2 2 2 2 2 2 31
54 2 2 2 2 2 2 2 30
66 2 2 2 2 2 2 2 2 2 2 2 30

1 2 2 2 2 2 2 2 2 2 2 30
61 2 2 2 2 2 2 2 2 2 29
67 2 2 2 2 2 2 2 2 0 29
28 2 2 2 2 2 2 2 2 2 2 29
10 2 2 2 2 2 2 2 2 2 28
21 2 2 2 2 2 28
62 2 2 2 2 2 2 2 2 2 2 2 2 2 28

*  73 2 2 2 2 2 2 2 2 2 2 2 28
44 2 2 2 2 2 2 2 2 2 28
27 2 2 2 2 2 2 27
15 2 2 27
35 2 2 2 2 2 27
37 2 2 2 2 2 2 2 2 27

4 2 2 2 2 2 2 27
52 2 2 27
32 2 2 2 2 2 2 2 26
46 2 2 2 2 2 2 2 2 2 2 2 26
20 2 2 2 2 2 2 2 2 2 26
75 2 2 2 2 2 2 2 2 26
36 2 2 2 2 2 25
26 25
55 2 2 2 2 2 2 25

6 2 2 2 2 2 24
9 2 2 2 2 2 24

13 2 2 2 2 2 2 24
47 2 2 2 2 2 2 2 24
14 2 2 2 2 2 2 2 2 2 23
49 2 2 21

5 2 2 19
68 2 2 2 2 2 2 19
12 2 2 2 2 17
30 2 2 2 2 2 2 16
72 2 2 2 14
29 2 2 2 14
53 2 12

A ctivity
Score 145 141 137 130 127 121 119 116 111 109 107 97 95 91 88 88 85 83 80 69 54 52 50 42 37
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pile up to form a column or a row of misplaced 2’s, that is a sign of trouble. A column of 
misplaced 2’s is an indication that an activity is not functioning as intended, that it is not 
collaborating with the other activities to define a single variable.

It seems clear from Figure 2.4c that Activities 5 and 23 do not fit with the other activi-
ties. There appears to be almost no relationship between liking these activities and liking the 
others. When we look back at Figures 2.3a and 2.3b we see that Activities 5 and 23 are two 
of the three activities which our judges had most trouble positioning among the other activi-
ties. The responses of these seventy-five children to Activities 5 and 23 add to our suspicion 
that they do not belong on the same liking-for-science line as the majority of these activities.

The third activity upon which the judges showed poor agreement was 16, “ Making a 
map” . We see in Figure 2.4c that three low-scoring children liked this relatively difficult 
activity, and a few high-scoring children did not like it. While the responses to this activity 
are not as disorderly as the responses to Activities 5 and 23, neither are they as orderly as the 
responses to Activity 3. Does this activity belong on the line defined by the majority of the 
science activities? To make a decision on Activity 16 it would be helpful if we could estimate 
how unlikely the unexpected responses to Activity 16 are. In particular, it would be helpful 
to know how unlikely this pattern of responses would be if Activity 16 were assumed to define 
the same attitude variable as the other activities. In Chapter 5 we develop a statistic which 
tells how well each activity fits with the other activities in a questionnaire.

Identifying Children with Unusual Responses. A  column of misplaced 2’s in Figure 2.4c is a 
sign that an activity is not functioning to define the science variable as intended. A row of 
misplaced 2’s is a sign that a child has responded in an unusual way. Consider the responses 
of Child 8. This child liked the twelve activities which were easiest to like and, as Figure 2.4b 
shows, disliked the five hardest-to-like activities. His responses are consistent with the or-
dering of the activities by activity score, and we should be able to use his score of 33 to tell 
us where he stands among these activities without having to refer to the particulars of his 
responses.

Now consider the responses made by Child 71 in the next row of Figure 2.4b. This child 
also made a score of 33 on the questionnaire, but the way in which he did so is puzzling. He 
did not like three of the easy-to-like activities on the left of the matrix, but liked the three 
activities which were hardest to like. If we reorder the twenty-five activities on the basis of 
this child’s responses we obtain a very different difficulty ordering from the one at the bottom 
of the matrix. Not only does the 33 of Child 71 not tell the same story as the 33 of Child 8, 
but we cannot use the summary ordering of the twenty-five activities at the bottom of the 
matrix to tell us what the 33 of Child 71 means in terms of liked and disliked activities. The 
same problem arises for Child 73 further down the matrix.

We can learn still more about the science data matrix by removing the l ’s and 2’s to show 
the pattern of 0’s. This pattern is displayed in Figure 2.4d. As expected, the 0’s are concen-
trated in the lower right com er of the matrix (low-scoring children responding to activities 
which are hard to like). Two strings of unexpected 0’s spoil this picture. These strings are 
in the response records of Children 71 and 73—the same children identified for their surprising 
patterns of likes. We see that these two children like a surprising number of hard-to-like 
activities, and dislike a surprising number of easy-to-like activities.
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The responses of Children 71 and 73 leave us puzzled about their liking for science. The 
only other children who dislike the activities on the far left of the matrix are the very low- 
scoring children at the bottom. Does this mean that Children 71 and 73 have attitudes like 
children at the bottom of the matrix? On the other hand, from the number of hard-to-like 
activities they like (Figure 2.4c), we might conclude that their attitudes are more like the 
attitudes of children near the top of the matrix. Apart from Child 71, the only other child who 
likes all three of the hardest-to-like activities is Child 2 at the top of the matrix with a perfect 
score of 50. The responses of Children 71 and 73 do not tell us where they are on the attitude 
variable defined by the rest of these children.

Just as we need a way to decide how unlikely the responses to an activity are, given the 
activity’s score, we also need a way to decide how unlikely a child’s row of responses are, 
given his score. In Chapter 5 we develop a statistic which can be used to assess how well any 
particular child’s responses fit with the score ordering of the activities.

Identifying Differences in Response Style. While Children 8 and 71 differ in the activities they 
prefer, they do not differ in the way they use these response categories. The frequencies with 
which each category of response was used by each child are shown on the right of Figure 
2.4b. Children 8 and 71 made their score of 33 by disliking (0) seven activities, being unsure 
(1) about three activities, and liking (2) the remaining fifteen. But this pattern of category use 
is not followed by Child 69 who also has a score of 33.

The response frequencies on the right of Figure 2.4b reveal some interesting differences 
among these children. Consider the seven children whose frequencies are reproduced in Table 
2.4a. The third row of Table 2.4a contains the orderly responses of Child 62. This child liked 
easy-to-like activities on the left of the matrix and disliked hard-to-like activities on the 
right. But Child 62 did not respond “ not sure/don’t care" to any activity. For this child there 
appears to be only one decision for each activity—a choice between liking and disliking. Child 
46 has a similar set of frequencies. He responds "not sure/don’t care” to only two of the 
twenty-five activities.

Contrast this with the responses of Child 26 who made a score of 25. This child gave a 
1 to all twenty-five activities. Perhaps Child 26 was simply uncooperative, but there are other 
children like 15 and 52 who express some preferences yet respond “ not sure/don’t care” to 
most activities. Child 52, for example, said he liked Activities 18 “ Going on a picnic” and 
19 “ Going to the zoo” , but neither liked nor disliked any of the other twenty-three.

Children 46 and 26, with their very different use of the response alternatives, have almost 
the same scores on the questionnaire. Do we believe that their attitudes are almost identi-
cal? We will certainly want individual differences like these drawn to our attention. Before 
accepting the scores of Children 26, 15 and 52 as indications of their attitudes, we may wish 
to investigate the reasons for their apparent hesitancy to commit themselves.

2.4.3 Scoring Responses Dichotomously

One approach to analyzing the science data in Figure 2.4b is to rescore children’s responses 
into two response categories and to calibrate the twenty-five science activities and measure the 
attitudes of these seventy-five children from these dichotomously-scored responses. The two



24 RATING SCALE ANALYSIS

  TABLE 2.4a _______
SOME RESPONSE PATTERNS

F R E Q U E N C Y  
C H IL D  O F
SC O R E  R E S P O N S E

0 I 2

8 2 2 2 2 2 2 2 2 2 2 1 2 0 1 2 0 2 1 0 0 0 0 0 33 7 3 15
71 2 0 2 0 2 2 2 2 0 2 2 2 0 0 1 2 0 2 0 1 2 2 2 33 7 3 15

62 2 2 2 2 2 2 2 2 0 0 2 0 2 2 0 0 2 0 0 0 0 0 0 28 II 0 14
46 2 2 2 2 2 2 0 2 l 2 2 2 0 0 0 0 0 0 0 0 1 0 0 26 11 2 12

26 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 25 0 25 0
15 1 2 I 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 27 0 23 2
52 2 2 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 27 0 23 2

______________ FIGURE 2.4e ______________
-------------- SCORING RESPONSES DICHOTOMOUSLY ---------------------

NOT SURE/
DISLIKE DON’T CARE LIKE

 0_________________1_______________ 2__
Only a smile counts “ for” 0 0 1

Only a frown counts “ against”___________ 0_________________I_______________ 1

ways to rescore the science data are shown in Figure 2.4e. The first counts only smiles. The 
second counts only frowns.

We will explore these possible rescorings of the science data for two reasons.' First, a 
well-established method already exists for the analysis of dichotomously-scored responses (see 
Wright and Stone 1979). If we can show that the science variable can be defined as well from 
dichotomously scored responses as from the original three-category responses, and, if children 
can be measured equally well from their rescored responses, then we can use the simpler, more 
familiar procedure for analyzing dichotomous responses. Second, rescoring response alter-
natives to a smaller number of categories is a widespread and rarely questioned procedure. But 
how objective is this procedure? It would be interesting to know what loss of information 
occurs when responses are rescored, and whether rescoring can be misleading.

The responses of the seventy-five children have been rescored using the (001) “ only smiles” 
scheme. The rescored data matrix is shown in Figure 2.4f. This matrix is not identical to 
the matrix in Figure 2.4c because new row and column sums have been obtained based on the 
rescored responses, and the rows and columns have been resorted accordingly. The responses 
of the seventy-five children have also been rescored using the (011) “only frowns” scheme. This 
matrix appears in Figure 2.4g. New row and column sums have been obtained, and the rows 
and columns resorted.

Calibrating Activities. We are trying to find a natural ordering in the twenty-five science ac-
tivities, one which we can use to mark out a line of increasing liking for science, and thus 
provide an operational definition of a liking-for-science variable. Since the alternative res-
corings (001) and (011) both preserve the order of the original response alternatives, we do not 
expect them to lead to different orderings of the science activities. In fact, if we are to use

C H IL D
N U M B E R  A C TIV IT IES O R D E R E D  BY A C TIV ITY  SC O RE
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rescored responses to lay out a variable, it is essential that alternative rescorings like (001) and 
(Oil) do not lead to different operational definitions of the variable.

The activity serial numbers at the top of Figures 2.4f and 2.4g, however, show that the 
twenty-five science activities are ordered differently by these alternative rescorings. Activity 
12, for example, is to the right of Activities 18 and 19 under the (001) scoring, but to the left 
of these two activities under the (Oil) scoring. To investigate just how different these two 
orderings of the activities are, we have plotted the activity scores at the bottom of Figure 2.4f 
against the activity scores at the bottom of Figure 2.4g in Figure 2.4h.

Our motive for making Figure 2.4h was to study the reordering of activities caused by the 
alternative rescorings. But a glance at Figure 2.4h reveals a more striking feature. The 
activity scores when plotted against each other do not follow the straight line we may have 
expected. Instead, they are scattered about a curve which we have drawn in by eye. Before
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we investigate our original question—How different are the orderings of the activities under 
these alternative rescorings?—we need to understand what this curve tells us about activity 
scores.

We will begin by looking at four activities which lie close to the curve (Activities 18, 21, 
17 and 20). On the horizontal axis, under the (001) scoring, Activities 18 and 21 are twenty- 
one score points apart. So are Activities 17 and 20. This means that if we were to use the 
(001) activity scores to position these four activities along an attitude-to-science continuum, 
we would position Activities 18 and 21 the same distance apart as Activities 17 and 20.

If we consider scores on the vertical (Oil) axis, however, we find that Activities 18 and 
21 are now only five score points apart, while Activities 17 and 20 have become twenty-four 
score points apart. This means that if we were to use the Oil scores to position these four 
activities along an attitude-to-science continuum, we would position Activities 17 and 20 about 
five times as far apart as Activities 18 and 21!

What we have stumbled across is a problem inherent in any scores obtained by simply 
summing the columns or rows of a data matrix. This problem is that raw scores are not on 
an interval scale which can be generalized. A difference of one score point on the left of Figure 
2.4h does not have the same meaning as a difference of one score point on the right. One 
score point at the top of Figure 2.4h does not have the same meaning as one score point at the 
bottom. Raw activity scores cannot provide a clear picture of the attitude to science varia-
ble. The conclusions we reach about the relative positions of Activities 18, 21, 17 and 20 on 
this variable, for example, are different under the alternative rescorings. This inconsistency 
threatens to interfere with our attempt to construct a general attitude to science variable with 
a defensible unit of measurement.

Fortunately, these non-linear activity scores can be transformed to a new metric which 
can maintain a constant unit from one end of the continuum to the other. This transformation 
changes each activity score S into a “ logit” score d through

d = log [(N-S)IS]

where N  is the number of children in the sample (in this case N  = 75). This changes high raw 
scores S into low logit scores d, so that on the logit scale the activities which are easiest to like 
have lowest logit scores. Table 2.4b shows how this transformation works for Activities 18, 
21, 17 and 20. The raw scores S of these activities under the (001) and (011) scorings are on 
the left of Table 2.4b. On the right, these scores are transformed to their logit equivalents.

Table 2.4b shows that the twenty-one raw score points separating Activities 18 and 21 
under the (001) scoring have been transformed to a difference of —2.23 logits on the new scale, 
while the five score points separating these two activities under the (011) scoring have been 
transformed to a difference of —2.16 logits. The logit scores for Activities 17 and 20 are also 
shown in Table 2.4b. The logit difference between Activities 17 and 20 is not about the same 
as the difference between Activities 18 and 21, as we would have concluded from the (001) 
scoring; nor is it almost five times the difference, as we would have concluded from the (011) 
scoring. Instead, on the logit scale, the distance between Activities 17 and 20 is about -1 .5  
logits or .7 times the distance between Activities 18 and 21, and this relationship holds regardless 
of whether responses are scored (001) or (011).
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TABLE 2.4b
TRANSFORMING ACTIVITY SCORES 

INTO LOGITS

ACTIVITY
NUMBER

RAW ACTIVITY SCORE 
5

(001) (011)

TRANSFORMED LOGIT SCORE 
4=log[(N -S)/S]

(001) (011)

18 71 74 -2 .94 -4 .60
21 50 69 -0.71 -2 .44

Difference 21 S -2 .23 -2 .16

17 32 63 0.28 -1 .66
20 11 39 1.73 -0 .08

Difference 21 24 -1 .45 -1 .58

Having encountered and dealt with the non-linearity of activity raw scores, we return to 
the question that led us to draw Figure 2.4h in the first place, and we plot the activity scores 
from the alternative rescorings again. This time, because they are expressed in logits, they 
appear without the confounding of non-linearity. This new plot is shown in Figure 2.4i. Now 
Activities 18, 21,17  and 20 which followed the curve in Figure 2.4h follow a straight line which 
runs parallel to the identity line. The reason the activities are distributed about this line rather 
than about the identity line is that each of the twenty-five activities is more difficult when 
scored (001) than when it is scored (Oil). To bring these activities on to the same scale it is 
necessary to subtract 1.8 logits (the difference between the two diagonal lines in Figure 2.4i) 
from the difficulty of every activity under the (001) scoring.

With the confounding of non-linearity removed, we are ready to consider the distribution 
of activities about the straight line we have drawn through them. The activities which lie 
furthest from this line are Activities 13 and / .  Under the (001) scoring, Activity 13 is the 
fourth easiest activity to like. But under the (011) scoring, it is the ninth. Under the (001) 
scoring, Activity 1 is the eleventh easiest activity to like. But under the (011) scoring, it is 
the sixth. These activities change their relative standing among the other activities as we 
change from one scoring scheme to the other. But if a change in scoring alters the activity 
definition of the liking-for-science variable, then how will we decide which arrangement of 
activities is best for defining a general variable?

To investigate Activities 13 and 1 further, we have taken their category frequencies from 
the bottom of Figure 2.4b and displayed them in Table 2.4c. Under the (001) scoring, the raw 
activity scores for Activities 13 and 1 are 59 and 37. Under the (011) scoring, they are 59 + 9 = 68 
and 37 + 35 = 72. Thus under the (001) scoring Activity 13 has the higher score and appears 
easier to like, while under the (011) scoring, Activity 1 has the higher score and appears easier 
to like. How shall we decide which activity is more likable?

Although fewer children disliked Activity 1 than Activity 13, it is also true that fewer 
children liked this activity than Activity 13. It is the tendency of these children to make greater 
use of the neutral response on Activity 1 than on Activity 13 that causes the different orderings 
of these two activities under the alternative rescorings.
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_________  FIGURE 2.4i __________
ACTIVITY LOGIT SCORES UNDER 

(001) AND (Oil) SCORING

TABLE 2.4c
K E 5 C U K 1 N U  A C T IV IT IE S  13 A N D  1

CATEGORY (001) (011)
ACTIVITY FREQUENCIES RAW LOGIT RAW LOGIT
NUMBER 0 1 2 SCORE SCORE SCORE SCORE

13 7 9 59 59 -1.32 68 -2.31

1 3 35 37 37 0.04 72 -3.18
Difference 22 -1 .36 - 4 0.87

This inconsistency in the ordering of Activities 1 and 13 would have gone undetected if 
we had used only one of the two scoring schemes. It was only by trying both rescorings and 
plotting the resulting activity scores against one another that we noticed that Activities 1 and
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13 shifted their positions among the other activities as we changed from one scoring scheme 
to the other.

Measuring Attitudes. In addition to seeking an objective ordering of the twenty-five science 
activities, we also seek an objective ordering of the seventy-five children along this liking-for- 
science variable. For this we investigate the ordering of the seventy-five children under the 
(001) and (Oil) scorings. On the right of Figures 2.4f and 2.4g are the scores for each child 
under the alternative rescorings. These children scores have been plotted against one another 
in Figure 2.4j. Now we see a scattering of points in the upper left corner of the picture. The 
three points in the extreme corner are of particular interest. Child 26 is the child who made 
twenty-five J’s on the questionnaire. This gives him a score of 0 under the (001) scoring, but 
a perfect score of 25 under the (Oil) scoring. Depending on how his responses are rescored, 
Child 26 is estimated to be either the child with the most positive attitude to science, or the 
child with the least positive attitude to science! Similarly, Children 15 and 52 made perfect 
scores of 25 under the (011) scoring, but scores of only 2 under the (001) scoring.

In the middle of the picture, along the identity line, are Children 62, 57, 7 and 2. These 
are children who did not respond “ not sure/don’t care” to any item and, as a result, made the 
same raw score under both rescorings.

The child scores plotted in Figure 2.4j suffer from the same problem as the activity scores 
in Figure 2.4h. They are not on the same interval scale. The curve we have drawn in Figure 
2.4j is the mirror image of the curve in Figure 2.4h. It connects a zero score with a perfect 
score under each rescoring. Five children positioned close to this curve have been circled for 
reference.

Each score r can be transformed to a common interval scale using the logit transformation

b = log[r/(L-r)]

where L  is the number of activities (in this case L — 25). This transformation changes high raw 
scores r into high logit scores b, so that on the logit scale the children with the most positive 
attitudes to science have the highest logit scores.

The logit scores for the seventy-five children are plotted against each other in Figure 
2.4k. Now the children located along the curve in Figure 2.4j are located along a straight line 
which runs parallel to the identity line, but 1.8 logits to its left. Children 26, 15 and 52 do not 
appear in Figure 2.4k. These children did not “ dislike” any activity, and so made perfect 
scores of 25 and logit scores of plus infinity under the 011 scoring. The spread of children 
around this line is an indication that the alternative rescorings do not produce identical orderings 
of children. What we conclude about the relative attitudes of the children in this sample will 
depend upon which of the two rescorings we choose to use.

These contradictions would not have been exposed had we used only one rescoring of the 
original responses. The discrepancies were exposed when we used both rescorings and then 
performed secondary analyses in which the results of the alternative rescorings were com-
pared. In general, if we ignore the original observation format and look at only one rescoring 
of responses, we risk missing such contradictions. As the number of response alternatives 
increases beyond three, the number of alternative rescorings of the data, and hence the number 
of secondary analyses needed to compare these rescorings, increases rapidly. These obser-
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_______ FIGURE 2.4j _______
CHILDREN SCORES UNDER 

(001) AND (Oil) SCORING

Scoring (001) ScorM

vations lead us to recommend against rescoring multiple response category data. The method 
we develop in the chapters to follow has the advantage of being able to expose contradictions 
like those discovered here by means of a single analysis based on the original observation 
format.

2.5 PROBLEMS WITH SCORES

Before leaving our inspection of the science data, let us review some of the problems that 
arise when we try to build variables and measure persons using raw scores from the margins 
of a data matrix.
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__________  FIGURE 2.4k __________
CHILDREN LOGIT SCORES UNDER 

(001) AND (011) SCORING

2.5.1 The Need for Linearity

The first problem with both activity scores and children scores is that they are not expressed 
on a linear scale. Trying to see the science variable in the raw activity scores is like trying 
to see oneself in a warped mirror—while the parts may be in order, they are not in propor-
tion. Raw activity scores distort both ends of the variable, making distances between children 
at the extremes look shorter than they would look if the activities were centered on these 
extreme children. To rectify this, the activity scores can be transformed to a “ logit” met-
ric. This straightening process removes the distortions at both extremes and shows the variable 
in a form which does not depend on how activities are targeted on children.

The non-linearity of raw scores may not be obvious in any single set of item or person 
scores—-just as the distortions produced by a warped mirror may not be obvious unless you 
have seen your image in other mirrors. But it becomes obvious when item scores are obtained
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from samples at different levels of ability or attitude, or when person scores are obtained from 
subsets of items at different levels of difficulty. As we have just seen, it also becomes obvious 
when scores are constructed from different rescorings of the same data.

The activity scores and children scores must be re-expressed on a linear scale if we want 
to do arithmetic with them. Even the simplest statistics like means and standard deviations 
assume linearity. Raw scores do not provide linearity.

2.5.2 The Need for Sample-free Item Calibrations and Test-free Children Measures

A second problem with raw scores is that their values depend on the particulars of the 
questionnaire and of the sample of children being measured. The children scores on the right 
of Figure 2.4b reflect both the number of activities in the questionnaire and the likability of 
these activities. If we were to delete some activities from the questionnaire, then these children 
would make lower scores. Or, if we replaced some of the hardest-to-like activities with an 
equal number of easy-to-like activities, then we would expect these children to make higher 
scores. Because children scores depend on the number of activities in the questionnaire and 
on their likability, it is not possible to compare scores made on different questionnaires di-
rectly. Before such comparisons can be made, raw children scores must be transformed into 
“ measures” which are freed of the particulars of the activities used to obtain them.

The same is true of the activity scores at the bottom of Figure 2.4b. These scores reflect 
both the number of children in the sample and the attitudes of these children to science. If 
we were to remove some children from the analysis, then these activities would have lower 
scores. If we replaced some of the children with less positive attitudes with an equal number 
of children with more positive attitudes, then we would expect the twenty-five activities to have 
higher activity scores. Before the likability of activities on different questionnaires can be 
compared, raw activity scores must be transformed into “ calibrations” which are freed of the 
particulars of the children used to obtain them.

2.5.3 The Need for a Common Scale for Children and Activities

We hope to use the observations in Figure 2.4b to estimate a position on a liking-for-science 
variable for each of the twenty-five science activities and each of the seventy-five children. We 
expect hard-to-like activities to define high levels of liking for science, and easy-to-like activities 
to define low levels of liking for science. But when the children scores on the right of Figure 
2.4b and the activity scores at the bottom of Figure 2.4b are examined, it is seen that these two 
sets of scores run in different directions and in different units. The activities hardest to like 
on the right of the matrix have the lowest activity scores, while the children with the most 
positive attitudes at the top of the matrix have the highest children scores. This makes it 
difficult to interpret a child's score in terms of activity scores and, so, makes it difficult to 
position children and activities on the same line.

The logit transformation can help to overcome this problem. We can transform the chil-
dren scores on the right of Figure 2.4b into logit scores by

b = log[r/(50 -  r)]
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where r is the child’s score and 2 x 25 = 50 is the highest score a child can make on this science 
questionnaire. The way in which this transformation works is shown in Figure 2.5a. The 
curve in Figure 2.5a describes the relationship between children's raw scores r and their 
transformed logit scores b.

Figure 2.5a shows that equal differences in the raw score metric do not represent equal 
differences in the logit metric. In the raw score metric the difference between a score of 40 
and a score of 45 is the same as the difference between a score of 25 and a score of 30. But 
when these scores are transformed, the difference of five score points between 40 and 45 
represents twice as much difference in attitude (.8 logits) as a difference of five score points 
between 25 and 30 (.4 logits). This is because 25 and 30 are near the middle of the set of possible 
scores, while 40 and 45 are near the upper limit of 50. Under this transformation a child with 
a high raw score ends up with a high logit score.
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The activity scores at the bottom of Figure 2.4b can also be transformed into logit scores
by

d = log[(150-S)/S]

where S is the activity score, and 2x75=  150 is the highest value this score can take. The 
way this works can be seen in Figure 2.5b. This curve is the mirror image of the curve in 
Figure 2.5a and describes the relationship between raw activity scores S and their transformed 
logit scores d.

Once again, equal differences in the raw score metric do not represent equal differences 
in the logit metric. A difference of one score point at the extremes of the raw score range 
represents a larger difference in difficulty than a difference of one score point in the middle of 
the range. Figure 2.5b also shows that when high-scoring activities are transformed to the

___________ FIGURE 2.5b___________
TRANSFORMING ACTIVITY SCORES

Transformed Score d
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logit scale, they take on low logit scores, while low-scoring activities take on high logit 
scores. Thus, the direction of the activity scores is reversed so that now they run in the same 
direction as the children scores.

The logit transformations yield children and activity scores which run in the same direc-
tion. But before we can make direct comparisons between them, they must also be expressed 
on a scale with the same unit and origin. Chapter 4 describes how to make these further 
adjustments so that children logits and activity logits can be compared directly.



3 MODELS FOR MEASURING

In this chapter we describe five measurement models. These are the tools we use to 
construct variables and make measures from data. They are the heart of our psychometric 
method. All five are members of a family of measurement models which share the possibility 
of sample-free item calibration and test-free person measurement.

The five models we describe have been developed for use with five different response 
formats. They are Rasch’s Dichotomous model (Rasch 1960), the Poisson Counts model 
(Rasch 1960), the Binomial Trials model (Rasch 1972; Andrich 1978a, 1978b), the Rating Scale 
model (Andrich 1978c, 1978d, 1979; Masters 1980) and the Partial Credit model (Masters, in 
press; Masters and Wright 1981).

We will develop each of these models and show how they share a common algebraic 
form. We will see that the Poisson, Binomial, Rating Scale and Partial Credit models can be 
thought of as simple extensions of Rasch's Dichotomous model to other response formats. Finally, 
we will summarize the distinguishing properties of this family of models.

3.1 THE FAMILY OF MODELS

3.1.1 Dichotomous

The simplest response format records only two levels of performance on an item. These 
are usually “ Fail” and “ Pass” , but they could be any pair of exhaustive and mutually exclusive 
response alternatives. We can think of items scored in this way as “ one-step” items. If this 
one step is completed, then the person scores 1 on the item. If it is not completed, then the 
person scores 0. This all-or-nothing format gives no credit for responses which are almost 
correct or for partially completed solutions to problems. It is the most frequently used format 
for scoring performances on educational tests.

In the 1950’s Georg Rasch introduced and used a measurement model for dichotomously- 
scored performances. This model, which is often referred to as “ the Rasch model” , has b.een 
widely applied to the analysis of educational test data and to the construction and maintenance 
of item banks. A detailed introduction to this Dichotomous model, a description of estimation 
procedures and tests of person and item fit and a worked example are available in Best Test 
Design (Wright and Stone 1979).

To expedite our discussion we will write Rasch’s Dichotomous model as 

Dichotomous _ exp(P„-8,7)
Model (pw7 l+exp(pn-8 „ ) ( >

38
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where <j>m7 is person n's probability of scoring 1 rather than 0 on item i, p„ is the ability of 
person n, and 8,/ is the difficulty of the one step in item i.

Equation (3.1.1) specifies the way in which the probability of success on item i is supposed 
to be governed by person ability and item difficulty. This relationship is pictured in Figure 
3.1a. The curve in Figure 3.1a describes the modelled probability <|>„,7 of passing item /—the 
probability of scoring 1 rather than 0 on item i.

For the development that follows it is useful to introduce Ttnio as person n’s probability of 
scoring 0 on item i, and TTm-/ as their probability of scoring 1. In the dichotomous case, this 
additional notation is redundant since Tr„,7 is simply the probability «J>m7 of completing the first 
and only step in item i, and Ttni0 = 1 -  <J>m/. However, this notation will be convenient when 
we consider more than two ordered response alternatives. For now, we note that (3.1.1) can 
be rewritten

= S a  = w p t f . - t , ,*  ,3.1.2)
1 T m O +  I t n i l  1 + e x p ( P n - 8 , y )

which makes explicit that <|>m7 is person n’s probability of scoring 1 rather than 0 on item i. Of 
course, when only two responses are possible, tt„,o + Trm7 = 1 and <(>„,/ = 'TT„,7.

Figure 3.1b shows the model “ category probability curves” for this one-step item i. These 
curves show the way in which the probability TTmo of scoring 0 and the probability tTnu of
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scoring 1 on a one-step item vary with ability. The item parameter Sl7 is at the intersection 
of the probability curves for categories 0 and 1.

3.1.2 Partial Credit

A simple extension of right/wrong scoring is to identify one or more intermediate levels 
of performance on an item and to award partial credit for reaching these intermediate 
levels. Three items for which a partial credit format might be used are shown in Figure 
3.1c. Four ordered levels of performance are identified in each item. These levels are labelled 
0, 1, 2 and 3, with 3 being the highest level of performance possible.

When four ordered performance levels are identified in an item, the item can be thought 
of as a “ three-step” item. The three steps in the mathematics item are shown in Figure
3. Id. The first step is to solve the division 9.0/0.3 = ? to make a 1 rather than a 0. The 
second step, which can be taken only if the first step has been completed, is to solve the 
subtraction 30 -  5 = ? to make a 2 rather than a 1, and the third step, which can be taken only 
if the first two steps have been completed, is to solve V25 = ? to make a score of 3 rather than 
2.

To develop a Partial Credit model for this sort of item we will consider a two-step item i 
with performance levels 0, 1 and 2. We begin with an expression for the probability of person 
n scoring 1 rather than 0 on this item which is identical to the Dichotomous model (3.1.2)



_______________  FIGURE 3.1c________________
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IT nil =  exp(P„ ~  8»)
TTn/0+ i r nl/ 1 + exp(P„-8 ,/)

The only differences are that now, since we are considering more than two ordered performance 
levels, TT„io + Ttn//< 1, and, while 8,/ still governs the probability of completing the first step to 
score 1 rather than 0, the first step is not the only step in item i.

The second step from level 1 to level 2 can be taken only if the first step from level 0 to 
level 1 has been completed. A parallel expression for the probability of completing this second 
step in item i is

Tr„a exp(p„-8g)
T t n i i +  TT-a 1 + exp(P„ -  8e )

This gives the probability of person n scoring 2 rather than 1 on item i as a function of the same 
person ability p„ and a second item parameter 8g which governs the probability of making the 
transition from level 1 to level 2. While 8C governs the probability of completing the step from 
level 1 to level 2, it says nothing about person n 's probability of reaching level 1 in the first 
place. That depends on the person’s ability and the difficulty of the first step in the item.

For items with more than two steps, additional probability expressions of the same form 
as (3.1.3) and (3.1.4) can be introduced to describe the probability of scoring 3 rather than 2, 
4 rather than 3, and so on, in terms of item step parameters 8#, 8*, . . . , 8,m. This leads to 
a general Partial Credit model

0

, _ Ttnik _  eXp(Pn ~ 8,<t)<J>ni4 — k —1,2, . . . , m, (3.1.5)
TTnik-l + Ttnik 1 + exp(0„ -  8,*)

which can be used to describe any ordered sequence of dichotomous steps.

For a one-step item (m = 1) we model just one operating curve which describes the prob-
ability of scoring 1 rather than 0 on the item (Figure 3.1a). For a two-step item (m = 2) we 
model two operating curves—one for each step. The first describes the probability of scoring 
1 rather than 0 on the item. The second describes the probability of scoring 2 rather than 1 
(Figure 3.1e). These operating curves are simple logistic ogives of the same slope which differ 
only in their location on the ability continuum. While we have drawn the curve for the second 
step in item i to the right of the curve for the first, so that the second step is more difficult, this 
difficulty order is not necessary. The second step in item / could be easier to complete than 
the first, even though it can only be attempted after the first has been completed. In that case, 
the curves in Figure 3.1e would be in the opposite order.

From (3.1.5), and with the requirement that person n must make one of the m,-+1 possible
mi

scores on item i (i.e., 2  'nmk = 1), a general expression for the probability of person n scoring
k  = 0

x on item i follows
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_________ FIGURE 3.1e _________
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Partial Credit _  eXp,?» <P“ 8|l)
Model ^  -*-0,1, . . . , mi (3.1.6)

2  exp 2  (P/i_

0 0
where 8«» =  0 so that 2  (0„ -  8y) = 0 and e x p ^ ( P „ - 8y) = 1. The observation x  in (3.1.6)

7 =  0  7= 0 JT
is the count of the completed item steps. The numerator e x p ^ O n - fy )  contains only the

7 =  0
difficulties of these x  completed steps, 8,/, 8e, . . . , 8„. The denominator is the sum of all 
m,-+l possible numerators.

Figure 3. If shows the category probability curves for the two-step item i in Figure 
3.1e. Now there are three probability curves, one for each response category. As in the 
dichotomous case (Figure 3.1b), 8 ,7  is at the intersection of the model probability curves for 
categories 0 and 1. The second item parameter 8# is at the intersection of the model probability 
curves for categories 1 and 2 .

If the first step in item 1 were easier (8 ,7  further to the left in Figure 3. If), and the second 
step were harder (80  further to the right), then the probability curve for the middle response 
category Tt„u would be more prominent, meaning that the probability of completing only the 
first step would be greater at every value of p„.
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__________  FIGURE 3.If __________
CATEGORY PROBABILITY CURVES 

FOR TWO-STEP ITEM i

logits

P
On the other hand, if 8,7 and 8# were brought closer together in Figure 3. If, then every 

person’s probability of completing only the first step in item 1 (i.e., every person’s probability 
of scoring 1) would decrease. When the second step is made easier than the first (8^ <  8,7), 
the probability curve for the middle response category drops still further, and every person 
becomes even less likely to complete only the first step. This is illustrated in Figure 
3.1g. Notice that 8l7 is still the point on the ability continuum where the probability curves 
for categories 0 and 1 intersect, and 8# is still at the intersection of the probability curves for 
categories 1 and 2. Even though the second step in Figure 3.lg is easier than the first, the 
defined order of the response categories requires that this easier second step be undertaken 
only after the harder first step has been successfully completed.

Item “Steps” vs Item “Levels”. The item “ step” parameters 8«, ha, * . . , 8im in (3.1.5) and 
(3.1.6) can be contrasted with an alternative set of parameters which are sometimes used to 
represent ordered response categories (Edwards and Thurstone 1952; Samejima 1969). To see 
the difference between the two sets of parameters consider the data displayed in Table 3.1a.

Table 3.1a shows the responses of ten persons to a three-step item 1. Each person’s score 
on this item is shown on the far right of the table. This score xni can be interpreted as the 
number of steps completed by person n taking item i or, if the ordered performance levels are 
labelled 0, 1, 2 and 3, as the highest performance level in item i reached by person n. The 
alternative dichotomous variable ynik in Table 3.1a is assigned the value 1 if person n reaches 
the k’th performance level and 0 otherwise. Seven persons in Table 3.1a completed the first 
step in item i and reached level 1 (y„u = 1). Of these, five also completed the second step and 
reached level 2 (y„a= 1), and of these, three went on to complete the third step and reached
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level 3 Cyni}= 1).

If we replace the column of person scores on the right of Table 3.1a by a column of 
dichotomous scores ym* for each performance level, it becomes possible to try Rasch’s Dicho- 
tomous model (3.1.1) on the analysis of these data. The probability of person n reaching 
performance level k in item i could be written as

• _ D i * ,n i   exp(p„ 'Yi/c) t
Unik ~ P {ynik ~ 1 jP/hYi* } — , , _„_/q \ (3.1.7)1 + exp((3„ -  y,*)

where p„ is the ability of person n and y,* is the difficulty of reaching level k in item i.

But as the number of persons reaching level k can never be greater than the number
N

reaching level k — 1 in an item, the item scores 5,* = 2 Tm* must be ordered
n

5,7 ^  Sj2 ^  5y . . . ^  Sim

and, because 5,-* is a sufficient statistic for y,* in (3.1.7), estimates for these item “ levels’’ must 
also be ordered

y,7 «S ya «  yo . . . 7,m

In other words, it must always be as easy or easier to reach level k — 1 in an item as to reach 
level k . These ordered “ level” difficulties y,/, ya , • • • "iim are sometimes referred to as 
“ category boundaries” . They invite three observations.

First, the intention of Rasch’s Dichotomous model is that each dichotomously scored 
observation y„,* be governed by only one person parameter and only one item parameter, and 
that it be independent of all other influences. But it is impossible for a person in Table 3.1a 
to reach level 3 (y„ij= 1) if they have not first reached level 1 (y„n = 1), and then level 2 
(yni2= l) . There are two ways a person may fail to reach level 3 in item f (y„o = 0). The first 
is that they reach level 2, but then fail step 3. The second is that they fail either step 1 or step 
2, and so never attempt step 3. Whether or not a person reaches performance level 3 depends 
not only on the difficulty of the third step, but also on the difficulties of the two preceding 
steps. This hierarchical dependence among levels contradicts the intention that P{y„o= 1} be 
governed by p„ and y# only.

Second, we can calculate person n 's probability of scoring x  on item i from (3.1.7) by 
subtracting cumulative probabilities. In the three-category case, these category probabilities 
are

__ _  | _  1 + exp(p„ -  ya)
T̂niO 1 Unit _

exp(p„ -  y,/) -  exp(3„ -  ya)
TT nil TTnil-TTna     (3.1.8)

exp(P „-ya) + e x p (2 3 „ -y ,|-  ya)
TT„£2 = Tl„a = --------------------------------------------

¥
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where ¥  is the sum of the three numerators.

Formulation (3.1.7) has been proposed as a latent trait model in which the probability of 
person n scoring x  on item i is expressed as a function of the person’s ability (3„ and the “ level” 
difficulties ja  and ya (Samejima 1969). Equations (3.1.8), however, show that no simple 
expression for Ttnix, the probability of person n scoring x  on item /, follows from (3.1.7). Further, 
there is no way to condition the person parameter (3„ out of the estimation equations for yH and 
ya except by treating item i as though it were two independent dichotomous items with diffi-
culties yu and ye, which by definition it is not. When ordered item “ levels” are parameterized, 
the latent trait model that results does not permit the separation of person and item parameters 
and, so, lacks the conditions necessary for objective comparisons of persons and items.

Third, by substituting values of y,7 and ye into (3.1.8), values of the model probabilities 
7Tm0, 'ir„,7 and Tt„a can be calculated for any value of (3„. Figure 3.1h shows the category 
probability curves for the case y,7 = — 1, y0 = +1. From Figure 3. lh it can be seen that the 
“ level”  difficulties y,7 and ye are the points on the ability continuum at which t t „,0 = 0.5 and 
TT„a = 0.5. The “ step”  difficulties 8,-/ and 8a in Figure 3 .If, in contrast, correspond to the 
intersections of the category probability curves.

Our approach to item i in Table 3.1a does not involve ordered “ level” difficulties 
(i.e., yu, the difficulty of reaching level 1; ye, the difficulty of reaching level 2 , and yy , the 
difficulty of reaching level 3), but is based instead on the difficulties 8«, 8e and 8# of each 
successive “ step” in the item. The third step in item /, for example, is from level 2 to

__________  FIGURE 3 .lh __________
CATEGORY PROBABILITY CURVES 

SHOWING ITEM “ LEVEL” 
PARAMETERS y„ AND ya
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level 3. The difficulty of this third step governs how likely it is that a person completing the 
first two steps will also complete the third (i.e., how likely it is that he will make a 3 rather 
than a 2 on item i). Unlike the item levels y,/, y<2, . . . , y/m in (3.1.7) and (3.1.8), each of 
which represents the difficulty of reaching a perform ance level, the difficulties 
8//, 8c, . . . , 8,m of taking steps can be separated from and estimated independently of the 
person parameters in the model.

3.1.3 Rating Scale

The structure of the mathematics item in Figure 3.1c invites a “ step” interpretation. But 
this idea can be applied to any item with ordered response alternatives. For an item on an 
attitude questionnaire, “ completing the k'th  step”  can be thought of as choosing the fc’th 
alternative over the ( k -  l)’th in response to the item. Thus a person who chooses to Agree 
with a statement on an attitude questionnaire when given the ordered categories

Strongly Strongly
Disagree Disagree Agree Agree

0 1 2  3

to choose among, can be considered to have chosen Disagree over Strongly Disagree (first 
step taken) and also Agree over Disagree (second step taken), but to have failed to choose 
Strongly Agree over Agree (third step not taken).

The relative difficulties of the “ steps” in a rating scale item are usually intended to be 
governed by the fixed set of rating points accompanying the items. As the same set of rating 
points is used with every item, it is usually thought that the relative difficulties of the steps in 
each item should not vary from item to item. This expectation can be incorporated into the 
Partial Credit model by resolving each item step into two components so that

8/* = 8,- + t*

where 8,- is the location or “ scale value” of item i on the variable and t* is the location of the 
k'th step in each item relative to that item’s scale value. Under this simplification, which is 
depicted for two items i and j  in Figure 3.1i, the only difference remaining between items is the 
difference in their location on the variable. The pattern of item steps around this location, 
which is supposed to be determined by the fixed set of rating points used with the items, is 
described by the “ threshold”  parameters 17, t 2, . . . , rm, and is estimated once for the entire 
item set.

The item parameters 8,• and 8,  in Figure 3.li describe the locations on the variable of the 
pair of operating curves for each item. To estimate t , and t 2 some arbitrary constraint is 
necessary. Here, t ,  and t 2 are constrained by setting t .  =0  (i.e., t ,  = - t 2). This locates 8 at 
the center of each ogive pair. In practice, it may be more useful to think of each item’s scale 
value as the location of the Ar’th step in each item, in which case the alternative constraint 
t * = 0  would be used.
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With 8f*=8,+T* the Partial Credit model (3.1.5) simplifies to the Rating Scale model 
(Andrich 1978c, 1978d, 1979)

TTnik exp[ 0„-(8f + T*)] , . „ ..........
<t>m* =   = ---------——   — k=  1,2, . . . , m (3.1.9)

TTmk-l +  TTnik 1 +  exp[0„  -  (8 , +  T*) ]

which, like the Partial Credit model, can be written as the probability of person n responding 
in category x  to item *

X

Rating Scale w p J j lk - f f t + T f l
Modal *■» -  ------------------ * =<U........... ”  ‘ *

X  exp S  [Pn-(8 . + T/)]C~0 j=0

0

where t 0= 0  s o  Uiat ex p X  tPn -  (8(+ t ,)] =  1.
i —0

When this model is applied to the analysis of a rating scale, a position on the variable 0„ 
is estimated for each person n, a scale value 8/ is estimated for each item i, and m  response 
“ thresholds” t / ,  t 2,  . , . , r „  are estimated for the m  +  1 rating categories. We will use this 
model in Chapters 4 and 5 to analyze the science data from Chapter 2.
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3.1.4 Binomial Trials

Under the two response formats just considered, the ordered performance levels in an item 
are defined by a sequence of item steps. These steps must be taken in a specified order, and 
the person’s score on the item is a count of the steps completed. When the steps are defined 
in terms of a set of fixed rating points, the Partial Credit model can be simplified by introducing 
the expectation that the relative difficulties of the item steps will not vary from item to item.

In the two response formats we consider next, successes on an item can occur in any 
order. The ordered performance levels 0 ,1 ,2 . . . m are defined as the number of independent 
successes on an item. These response formats treat the order in which successes (or failures) 
occur as unimportant and assume that each outcome is independent of the outcome of every 
other attempt. The first of these is the binomial trials format.

Binomial trials data result when the response format calls for m independent attempts at 
each item, and the number of successes x  in these m trials is counted. This format is sometimes 
useful for tests of psychomotor skills in which the observation is a count of the number of times 
in m independent attempts a task is successfully performed (e.g., a target is hit or a beanbag 
caught). Allowing a person more than one attempt at an item is intended to lead to a more 
precise estimate of the person’s ability than simply recording their failure or success on a single 
attempt.

A model for binomial trials data can be developed from Rasch’s dichotomous model for 
a single attempt at item i

Under the assumption that each attempt is independent of every other attempt, the probability 
of person n succeeding on x  particular attempts (e.g., the first x) and failing the other (m -x )  
attempts is

P exp(P„ -  8,)
1 + exp(P„ - 8,)

p x  (1  - p ) m - x

As there are ways of succeeding on x  of m attempts, person n's probability of succeeding

on any x  attempts is

Substituting for P in this expression produces

nix
m\ exp[-r(P„ - 8,)] 
s )  [ l+ exp (B „-81) r

which can be rewritten
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Binomial e x p ^  [pn- ( 8, + c;)]
Trials TT/iu = „  J=°k--------------------  * = 0,1 m (3.1.11)
Model 2  exp 2  [p „ - ( 8 , + c,)]

* -0  j=0

where Cj = log[ j  l (m - j+  1)].

In this Binomial Trials model (Rasch, 1972; Andrich, 1978a, 1978c), the c /s , rather than 
being parameters estimated from data, have fixed values which result from the assumption that 
the m  attempts are independent Bernoulli trials.

Once again, it is possible to think in terms of m  ‘‘steps'’ associated with each binomial 
trials item. The *’th step is to succeed on k rather than k -  1 attempts at the item. From 
(3.1.11) it follows that the probability of completing this step is

ex p [p „-(8, + c*)] , . „ ............
9m* = —----- , " ,  " = 7 "------7Z-----7r —— 7  *= 1 ,2 .............m  (3.1.12)

TTnik-l +  TTni* 1 +  exp[3„  -  (8 , +  C*)]

When the Binomial Trials model is written in this form, it is seen to define a series of 
parallel logistic ogives. Each ogive describes the model probability of succeeding on k rather 
than k -  1 attempts at item i. However, rather than estimating a location 8,-* for each of these 
ogives (Partial Credit model), or fixing the relative difficulties of the steps within each item and 
estimating this pattern of item steps once for all items (Rating Scale model), the Binomial Trials 
model, through its assumption that the m attempts at item i are independent Bernoulli trials, 
expects the relative difficulties of the steps within each item to take particular values.

Table 3.1b shows values of c* for m  from one through eight. Each row of this table shows 
the fixed pattern of step difficulties for a given value of m. The entries in this table can be 
thought of either as the difficulties of the steps in an item with scale value 8,-=0 , or as the 
difficulties of the steps in a binomial trials item relative to the item’s scale value 8,.

The first “ step” in a binomial trials item is to succeed on any one of m attempts to make 
a 1 rather than a 0 on the item. If only one attempt is allowed per item (i.e., m = 1), then 
ci = log(l/l) = 0, and the difficulty of succeeding on this one attempt is 8,. However, if more 
than one attempt is allowed, then the difficulty of succeeding on any one of these m attempts

TABLE 3.1b 
VALUES OF ck FOR THE 

BINOMIAL TRIALS MODEL

(m=  1, 2 .............. 8)

1 .00
>-2 >-4

2 - .6 9 .69
3 —1.10 .00 1.10
4 -1 .3 9 -.41 .41 1.39
5 -1.61 - .6 9 .00 .69 1.61
6 -1 .79 - .9 2 - .2 9 .29 .92 1.79
7 -1 .95 -1 .10 -.51 .00 .51 1.10 1.95
8 -2 .08 -1 .25 - .6 9 -.2 2 .22 .69 1.25 2.08
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(i.e., the difficulty of the first “ step” ) is 8, + c/ = 8, + log[l/(m - 1 + 1) ] = 8, - lo g  m. It fol-
lows that the greater the number of attempts m allowed at item i, the easier it is to take the first 
step and succeed on any one of these m attempts.

The second step in item i is to succeed on any one of the other m - 1 attempts in order to 
make a 2 rather than a 1 on the item. Because it is always harder to succeed on one of m - 1  
attempts than on one of m attempts, the second step in a binomial trials item is always more 
difficult than the first. Since the number of attempts remaining decreases with each success-
fully completed step, the Jfc’th step in a repeated trials item is always more difficult than the 
( k -  l)’th.

3.1.5 Poisson Counts

In binomial trials data the observation x„i counts the number of times person n is successful 
in m attempts at item i. This count takes values between 0 and a finite number of attempts 
m. In some testing situations, however, there is no clear upper limit on the number of events 
(failures or successes) which might be observed and counted. This is the case, for example, 
when the observation is a count of the number of times person n successfully completes some 
task / in a fixed period of time, or when the observation is a count of the errors made by person 
n reading passage i on a reading test. Under this response format the observation xni is a count 
of events which have innumerable opportunities to occur, but little probability of doing so on 
any particular opportunity. A person reading a passage on an oral reading test, for example, 
has at least as many opportunities to misread a word as there are words in the passage, but his 
probability of misreading any particular word is usually rather small.

Rasch (1960) used a Poisson model in 1952 to analyze errors and speed in reading. To 
develop that model here it is convenient to continue counting successes rather than errors. The 
Poisson model can be developed by considering an item i which presents a large number of 
opportunities for success m, but for which any person’s probability of success P on any 
particular opportunity is small. The probability of person n succeeding on x  of m opportunities 
is given by the binomial expression

for which person n’s expected number of successes on item i is X„, = mP.

If, as m becomes large and P becomes small, the expected number of successes 
\ ni=mP remains constant, then this probability can be replaced by the Poisson expression

which gives the probability of person n making x  successes on item i when the possible number 
of successes has no upper limit (i.e., m has become infinite). This probability is a function 
of person n’s expected number of successes X„,- on item /, which in turn must be a function of 
the person’s ability 0 „ and the item’s difficulty 8,.

nix x\ exp( X J
(3.1.13)
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If we now think in terms of a series of “ steps” associated with item then the first step 
is to succeed once on item i rather than not at all, the second is to succeed twice rather than 
once, and so on. Since TT„»= l/(exp\m) and t t „u = X.n,/(expXni), the probability of person n 
completing the first “ step”  in item i is

H n il

^ n iO  "I" TT/ii7
km 

1 +\„

In the Dichotomous, Partial Credit, Rating Scale and Binomial Trials models the probability 
of person n completing the first step in item i takes the general form

^  nil

'TT niO IT nn

exp(pn-S ,/)
l+ e x p (p „ - 8l7)

The similarity of these expressions suggests a simple interpretation of \ m in terms of the person’s 
ability p„ and the difficulty 8/; of the first step in item i.

Substituting \ ni = exp(P„ -  8«) in (3.1.13) yields

exp[x(pn- 8,/)] 
x\ exp[exp(P„ -  8 ,/)]

(3.1.14)

This Poisson Counts model can be expressed in the Partial Credit form by noting that since
X  X

= E l i  = exp ( S lo g /) ,  
j ~ i  j = i

exp[x(0 „ -  8 l7)]
xi

= exp
j - I

If 8 ,0 = 0  and 8y=8,7 + log j  for j> 0, this simplifies to

= e x p i ( P, - 8»)
x\ j = 0

(3.1.15)

From the definition of the exponential function

x X*
exp(X) = E  77 

k—o

it follows that

exp[Atf p„ -  8(7)]
exp[exp(pn- 8„)] = 2

k=o k\
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which, with (3.1.15), can be written

x k
exp[exp(0„ -  8,,)] = £  exp[ £  (P„ -  &</)]

k= 0  j —0

These observations enable the Poisson Counts model to be written

X

Poisson Counts 
Model Unix

J  =  0 (3.1.16)* JF
2  exp £  (P n -8#)

k = 0 j  = 0

0
where 8lO= 0  so that exp2 (Pn- 8</) = 1 and by =  8,/ + log j  for j>0.

j —0

Thus the Poisson Counts model can be thought of as the version of the Partial Credit model 
in which m = °° and by = 8,/ + log,/. In this model, as in the Binomial Trials model for finite 
m, the pattern of item steps is fixed by the model and is the same for every item. This fixed 
pattern of steps results from the assumption that the opportunities are Bernoulli trials and the 
use of the Poisson distribution to approximate the binomial when the number of opportunities 
is large and the probability of success on any given opportunity is small.

Figure 3. lj shows the probability curves defined by (3.1.16) for the first seven response 
categories in a Poisson counts item. This pattern of probability curves continues indefinitely 
to the right, with the curve for each category being slightly lower than the preceding curve on 
its left. These curves describe the way in which the probabilities of scoring 0, 1 ,,2, . . . , °° 
on item i vary with ability. The same pattern of curves applies to each item. Only the location 
of this pattern (specified by 8«) varies from item to item.

In the Rating Scale and Binomial Trials models, the location of each item on the continuum 
is summarized in an item “ scale value” defined as the mean step difficulty for the item 
(8,= 8,.). In the Poisson Counts model, the number of steps is infinite. This prevents the 
calculation of a mean step difficulty. It is convenient, however, to set 8,- = 8,/ so that the item 
“ scale value” corresponds to the position of a person who is as likely to make a 1 as a 0 on 
item /. The difficulty of th e / th  step in item i is then defined as by = 8, + log j.

3.2 DISTINGUISHING PROPERTIES OF RASCH MODELS

3.2.1 Operating Curves are Logistic Ogives with the Same Slope

The Dichotomous, Partial Credit, Rating Scale, Binomial Trials and Poisson Counts models 
share a common algebraic form. This shared form is captured in the general expression

<l>n«
Unix exp(0 „ ~ 8fr)

x=  1,2, . . . , rrii (3.2.1)
^ n ix - l  ^ n i x l+ e x p O n -S J



3 / MODELS FOR M EASURING 55

__________________  FIGURE 3. lj __________________
FIRST SEVEN CATEGORY PROBABILITY CURVES 

FOR A POISSON COUNTS ITEM

which gives the probability of person n scoring x rather than r - 1  on item / as a function of 
the person parameter 0 „ and an item parameter 8^ which governs the transition from perfor-
mance level x -  1 to performance level x  in item i.

Equation (3>2< 1) defines a series of rrti parallel ogives ivith locations 8/j, 8/2, • • * for 
each item i. These ogives describe the probability of scoring 1 rather than 0, 2 rather than 1, 
. . . , nti rather than m, — 1 on item i.

An important feature of (3.2.1) is that it does not use a slope parameter. The deliberate 
exclusion of a slope parameter distinguishes Rasch models from other latent trait models which 
allow the slopes of operating curves to vary from person to person (Lumsden 1976), item to 
item (Bimbaum 1968; Samejima 1969), or even to vary within the same item (Bock 1972). The 
consequence of modelling operating curves to have the same slope is that all person parameters 
0 „) and all item parameters ((8*,)) are point locations on a single latent variable, and so, can 
be expressed in the same scale units.

Special cases of (3.2.1) can be developed when the ordered response categories 0,1, . . . , m 
are defined in special ways. Table 3.2 shows the structure of 8** for the five measurement 
models described in this chapter.
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3.2.2 Data are Counts of Events

With the requirement that person n must respond in one of the available m /+ l response
ntj

categories, (i.e., 5) irm* = 1), (3.2.1) can be written as the probability of person n scoring x
k — 0

on item /

TT»
e x p £  (P n -V  

j= o __________
m, k

S e x p S  O
* - 0  j= 0

x = 0 ,l, . . . , m, (3.2.2)

The observation x  in (3.2.2) is a count of the steps person n completes in item i. On a 
dichotomously scored test, x  takes the value 1 if item i is answered correctly and 0  other-
wise. When several ordered performance levels are identified in an item (e.g., the mathematics 
item in Figure 3.1a), x  is a count of the steps completed. Alternatively, x  may be a count of 
successful attempts at an item or of errors committed while attempting a task. The use of 
simple counts as its basic data is another distinguishing characteristic of Rasch models. Other 
models call for weighted scores in which some events, successes (or errors), are weighted more 
than others, and in which the needed weights are inestimable without the introduction of 
arbitrary constraints.

Probability of 
Completing 
xth step

Probability of 
Scoring x

TABLE 3.2
FIVE MEASUREMENT MODELS

<!>«
T T n ix - l  “t" t t  n

exp(pn -  8fa)
1 +exp((3„-8ir) * = 1 ,2  m,

Tin
exp 5) (3 „ -  8y)

j = o __________m, Tc "" 
X e x p £  0 „ - 8y)
k̂ O j = 0

.............................................Dichotomous.

8ix = 8u  Partial Credit.

..............................................Rating Scale.

8« = 8, + log[x/(m -  jr + 1)] ................Binomial Trials.

x   Poisson Counts.

8* = 8, .

8« = 8*

8/* = 8,+

8* = 8,+

8* = 8; +
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3.2.3 Parameters are Separable

From (3.2.2), and with the usual assumption that responses to the L  items could be governed 
by the stipulated response model and so could be conditionally independent of one another, the 
probability of person n making any particular response vector (xni) on an L-item test is

= f l
iaj / m .  k  1

exp £  On - 8ff) /  £ e x p £ ( p „ - 8<,) 
j=0 /  k=0 j=0 J

exp2  Z O n - S i , ) / ^  (3.2.3)
!=/j=0

= [ e x p ( - £ £
i j=0

exp(rp„) /

where =  J T [ £  e x p £ ( p „ - 8tf)] and r = T  xni. 
r=i k=o j=o m

If the “ score”  r„ of person n on an L-item test is defined as the total count of item steps 
completed by the person, then the probability of person n making score r is

f ^ Xni
P{r;pn,((8tf))} = £  e x p £  £ ( p „ - 8(,) / 'I ', I

(x„o • j=o (3 .2 .4 )

exp(rpn)N'„ I £  e x p ( - £ £  %) 
J (Xni) i  j = 0

where £  denotes the sum over all response vectors (xm) which produce the score r.
(*ni)

The conditional probability of response vector (xni) given the score r is obtained by dividing 
(3.2.3) by (3.2.4)

P{(-*n/);((8y))|r} = P{(xm);Pn,((8y))} / P{r|p„,((8y))}
L  Xni r  L  Xni

= exp(rp„) e x p ( - £  £  8y) / exp(rp„) £  exp( -  £  £  &y) (3.2.5)
I j - 0  (Xni) i j  = 0

L Xni f L *ni
= exp( -  £  £  8y) / £  e x p ( - £  £  80)

i j= 0  (Xni) i j —0

The significance of (3.2.5) as a basis for establishing a system of measurement resides in 
the complete absence of the person parameter P„. This is a decisive characteristic of Rasch 
models. By conditioning on the person’s score r, the person parameter is eliminated from the 
conditional probability expression. This means that if a person makes a score of r on an L- 
item test, under the Partial Credit model the way in which this score is made is not governed 
by the person’s ability, but depends only on the relative difficulties of the steps in the L 
items. In other words, a person’s score vector (*„,-) contains no more modelled information 
about the person’s ability p„ than we already have in the person’s test score rn, which thus 
becomes a sufficient statistic for p„.
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The conditional probability of an entire matrix of responses ((*„,)) given the vector of 
person test scores (r„) is

N

= n
n — I

xni f’n
exp( -  Z  2  8v) 1 2  exp(

i j= 0  (x„i)

L  is !  1

-2 2 V
I  7 = 0  J

The fact that the person parameters do not appear in this expression means that the item 
parameters can be estimated independently of the abilities of the persons in the calibrating 
sample i.e., that the instruments of the measuring system can be calibrated sui generis quite 
separately from the measures of whatever objects are deployed to obtain these calibrations.

Conditioning on the sufficient statistics for the item parameters produces a similar con-
ditional probability expression containing only person parameters. The model probability of 
observing a particular N-person vector of responses (xni) to an item i is

N

P{UJ;(pn),(80)} = n
n = I

x„ i  "*» k  1

P 2  (Pn -  V  I 2  exp 2  (Pn -  S</)
7 =  0  * = 0  7 = 0  J

N  x„, I
xp( - 2  2  V  / * .  n=/7=0 J

exp( Z  xn,PJ
n = 1

(3.2.6)

N  nti k

where 'P,- =  f [ [ 2  exp2 (P « -8y)]-
n —l  k= 0  7 = 0

The probability of observing some particular vector (5) = Sn, Sq  Sim for item i is

<S) N

2 exp(2 xmp„)
(x„0 n — l

Xni
ex p (- 'Z  2  V

n = l j = 0
/ '  (3.2.7)

< S)

where Z  denotes the sum over all response vectors which produce the item count vector
(x ni)

(5). Dividing (3.2.6) by (3.2.7) yields the probability of the vector of responses (xm) given (5)

P{(x„,);(p„)|(5)} = P{(x„,);(0n),(8o)} / P{(5);(pn),(80)}
N  (S) N

= exp( Z  **&»> I 2  exP( 2  xmP J
n = I (x „i) n = l

(3.2.8)

in which the item step difficulties do not appear. By conditioning on the observed vector of 
item counts (5), the item parameters have been eliminated. This means that under the Partial 
Credit model, all the information available in a data matrix about the difficulties of the item 
steps ((8y)) is contained in the counts ((Sy)) of the number of persons completing each step in 
an item. No further information about the step difficulties can be obtained by keeping track 
of any other aspect of the performances of individuals.

Equations (3.2.5) and (3.2.8) demonstrate the separability of the parameters in the Partial 
Credit model. In (3.2.5) the conditional probability of the data (xm) given the person score r 
is a function of the item parameters only. This feature makes it possible to condition person 
parameters out of the calibration procedure, thereby enabling “ sample-free” item calibra-
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tion. In (3.2.8) the conditional probability of the data (xni) given the item step scores S,,, S,-2, 
. . . , Si„ is a function of the person parameters only. This makes it possible to condition the 
item parameters out of the measurement procedure, thereby enabling “ test-free” person mea-
surement.

3.2.4 Raw Scores are Sufficient Statistics

A fourth characteristic of Rasch models is that raw person and item scores are minimally 
sufficient statistics for person and item parameters. For the five models described in this 
chapter, the raw score rn (the total number of steps completed by person ri) is a sufficient 
statistic for the person parameter 0„. In the Dichotomous model the count S» is minimally 
sufficient for 8 ,-; in the Partial Credit model the counts Siu Si2, . . . , Sim are jointly sufficient 
for the item steps 8>,, 8 ,-2, . . . , 8 (m; in the Rating Scale model, Si+ is minimally sufficient for 
8,- and S +1, S +2, . .  .  ,  S +m are jointly sufficient for t , ,  t 2 ,  . . . , T m ,  and in the Binomial Trials 
and Poisson Counts models S,+ is minimally sufficient for 8,-.

3.3 SUMMARY

The five measurement models described in this chapter and summarized in Table 3.2 have 
been introduced for five different response formats. The model used in any particular appli-
cation will depend on the way in which responses have been recorded and on the user’s 
intentions. While these five models have appeared more or less independently in the literature, 
we have seen that all five can be understood as cases of one general model.

This general model is characterized by separable person and item parameters. Parameter 
separability permits person parameters to be conditioned out of item calibration, enabling 
sample-free calibration, and item parameters to be conditioned out of person measurement, 
enabling test-free measurement.

A concomitant of separability is minimally sufficient statistics for person and item param-
eters. These sufficient statistics are always counts of observable events (successes or er-
rors). This supports the common practice of reporting the number of correct answers as a 
person’s score on an achievement test and the use of “ integer scoring”  in Likert attitude scales.

To achieve separable person and item parameters, and hence the possibility of objective 
comparisons, all five measurement models are based on logistic item operating curves with 
common slope.

In Chapter 4 we describe four estimation procedures for this family of measurement 
models. In Chapter 5 we describe some statistics for analyzing the fit of data to these 
models. In Chapters 6 , 7, 8 and 9 we apply the Rating Scale and Partial Credit models to two 
attitude questionnaires, a school achievement test and a developmental screening test for 
prekindergarten children.



4 ESTIMATION PROCEDURES

4.1 INTRODUCTION

Models make ideas about experience explicit. They specify how experience might be 
simplified so that it can be remembered and managed. We construct measurement models to 
represent what we think can be the essential process in a measuring procedure. We also 
construct them so that we can estimate their parameters from observations intended to ap-
proximate their government. Parameter estimates are the only realizations of the ideas em-
bodied in measurement models. The procedures by which these estimates are obtained from 
observations must be generally accessible to implementation, dependable in performance and 
sufficiently accurate to be useful. The resulting item calibrations and person measures must 
be qualified with reasonable comments on their inevitable errors, and, since we know that even 
the most useful models cannot be “ true” , we must also summarize in some simple ways the 
extent to which the observations on which each estimate is based follow their modelled ex-
pectations.

In this chapter we will describe four estimation procedures: PROX, PAIR, CON and 
UCON, for the family of models described in Chapter 3. These procedures will provide us 
with estimates and their modelled standard errors. Then in Chapter 5 we will continue with 
a discussion of how to determine the extent to which a set of observations approximate the 
expectations of a measurement model. ,

PROX is a procedure simple enough for hand calculation. This procedure approximates 
the results of more exact but more complicated estimation procedures. Item calibrations and 
person measures are expressed on a common linear scale and are freed of the location and 
dispersion of the calibrating sample and the dispersion of the measuring test. The simplifying 
assumption which enables PROX is that the effects of the sample on item calibration and of 
the test on person measurement can be summarized by means and standard deviations on the 
variable. This procedure is especially convenient when a computer is not available. It also 
provides a useful way to illustrate the principles underlying Rasch calibration and measurement.

The second procedure, PAIR, is also simple enough to do by hand when the number of 
items and categories is small, say ten items and three categories. PAIR estimates item pa-
rameters by considering the items in a questionnaire two at a time. This pairwise approach 
eliminates the person parameters from the calibration procedure entirely, thereby making full 
use of the parameter separability in Rasch models. A useful advantage of PAIR over other 
estimation procedures is that it is not disturbed by the incomplete data matrices which result 
when different persons take different items.

The third procedure, CON, takes full advantage of parameter separability by conditioning 
the person parameters out of the calibration procedure entirely. CON makes no assumption 
about the distribution of persons or items on the variable. The disadvantage of CON is the
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“ round-off” error it encounters when there are more than twenty items with multiple response 
categories.

The fourth procedure, UCON, estimates the person parameters simultaneously with the 
item parameters. This procedure is an extension of the unconditional procedure developed 
by Wright and Panchapakesan (1969) and investigated by Wright and Douglas (1977a). UCON 
does not take full advantage of the separability of the person and item parameters in these 
models, and the presence of person estimates based on responses to L  items in the calibration 
procedure results in item estimates which must be corrected for a bias of order LI{L-1). UCON, 
however, does not incur round-off errors, and so, can be used with tests of any length.

In the discussion that follows we will begin in Sections 4.2, 4.3 and 4.4 with a detailed 
description of the PROX, PAIR and UCON  procedures for the Rating Scale model. Then in 
Section 4.5 we will outline all four estimation procedures for the more general Partial Credit 
model.
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4.2 A SIMPLE PROCEDURE: PROX

The advantages of the PROX  procedure are that it can be done on a hand calculator and 
that it illustrates most of the principles underlying Rasch calibration and measurement. All 
that PROX  needs for person and item estimation are the column of children scores and the row 
of activity scores from Figure 2.4b. PROX  frees these scores from sample size and test length 
by division, linearizes them by transforming them to a logit metric, centers these linear score 
logits to remove the effects of sample level, and then spreads them to remove the effects of 
test width and sample dispersion.

The PROX  procedure assumes that the attitudes of the children in this sample and the scale 
values of these science activities are more or less normally distributed. This assumption does 
not make full use of the capacity of Rasch models to calibrate items independently of all of the 
particulars of the calibrating sample, but it greatly simplifies the calibration of the twenty-five 
science activities and its results are almost always good enough in practice. Here are the 
stages of the PROX  procedure.

4.2.1 Removing Perfect Scores

First, the science data matrix must be edited for children who made perfect scores of 0 
or 50 on the questionnaire. These are children who either liked all twenty-five activities or 
disliked all twenty-five activities. We cannot make a definite estimate of the attitudes of these 
children because they are beyond the reach of this questionnaire. Similarly, we cannot estimate 
a scale value for activities which were liked by all seventy-five children or disliked by all 
seventy-five children because these activities are beyond the scope of this sample of chil-
dren. Thus we must also edit the data matrix for activities with perfect sample scores of 
75x0  = 0 or 75x2=150.

In this case, only one child (Child 2, score = 50) must be removed from the calibration. This 
reduces each activity score by 2 , and so, because there might be an item which only this child 
liked and all other children disliked, we must check the activities again for zero scores. Since
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lowest scoring Activity 5 now has a score of 35, all twenty-four activities can be calibrated 
from the responses of the remaining seventy-four children.

4.2.2 Linearizing Activity Scores

In Chapter 2 we saw that activity scores are not on a linear scale, meaning that a difference 
of one score point does not have the same meaning throughout the activity score range. We 
also saw that this non-linearity could be removed by transforming activity scores to a “ logit” 
metric.

The second stage in PROX is to transform each activity score 5,- to a proportion P, of its 
maximum value (2 x 74 = 148), and then to transform this proportion to a logit scale of “ difficulty- 
to-like” by taking the natural log of (1 -P,)/P,-. This is done in Table 4.2a, and the resulting

_________ TABLE 4.2a_________
INITIAL PROX CALIBRATIONS

m = 2, £  = 25, N = 74
(1) (2) (3) (4) (5) (6) (7)

ACTIVITY ACTIVITY ACTIVITY LOGIT INITIAL
NUMBER SCORE PROPORTIONS LOGIT SQUARED CALIBRATION

i s t Pi 1 ~P, X' x f dr
5 35 .24 .76 1.15 1.32 1.84

23 40 .27 .73 .99 .98 1.68
20 48 .32 .68 .75 .56 1.44
4 50 .34 .66 .66 .44 1.35
8 52 .35 .65 .62 .38 1.31
7 67 .45 .55 .20 .04 .89
9 78 .53 .47 -.1 2 .01 .57

16 81 .55 .45 -.2 0 .04 .49
25 83 .56 .44 - .2 4 .06 .45
3 86 .58 .42 -.3 2 .10 .37

14 86 .58 .42 -.3 2 .10 .37
6 89 .60 .40 -.41 .17 .28

17 93 .63 .37 -.5 3 .28 .16
22 95 .64 .36 -.58 .34 .11
24 105 .71 .29 -.9 0 .81 -.21

1 107 .72 .28 - .9 4 .88 -.2 5
15 109 .74 .26 -1.05 1.10 -.3 6
2 114 .77 .23 -1.21 1.46 -.5 2

21 117 .79 .21 -1.32 1.74 -.6 3
11 119 .80 .20 -1.39 1.93 -.7 0
13 125 .84 .16 -1.66 2.76 -.9 7
10 128 .86 .14 -1.82 3.31 -1.13
12 135 .91 .09 -2.31 5.34 -1.62
19 139 .94 .06 -2.75 7.56 -2.06
18 143 .97 .03 -3.48 12.11 -2.79

mN=  148 Sum = -17.18 43.82 0.00
Mean = -.6 9 Variance = 1.34

Pi = SJmN x. = </L U = (£ c f  - Lx.2) l(L - \)

x, = logKl-P')IP'] x.2 = .47 Lx?  = 25(.47) = 11.75

H1HII U = (43.82 —11.15)124

= 1.34
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activity logits are given in Column 5. (Rather than calculating the proportion Pj = Sj/mN, and 
then the logit x, = log[( 1 -  P,)/P(], we could calculate jc, directly as x, = log[(m/V -  S,)/5,]. The 
advantage of working with proportions is that it keeps clear the simple relation between pro-
portions and logits and allows us to use a table of this relation like Table 4.2b. The advantage 
of calculating X{ from S, and m N  directly is that the rounding variation produced by passing 
through Pi is avoided).

4.2.3 Removing Sample Level

The activity logits in Column 5 of Table 4.2a are linear in the variable they represent, but 
they contain the attitude level of the sample of children who produced them. If a group of 
children with more positive attitudes had been questioned, the activity scores in Column 2 
would have been higher, and so, the activity logits would have been lower. To remove the 
effect of sample level, the activity logits are centered by subtracting their own mean ( -  .69 
logits). This locates the origin of the logit scale at the mean of these twenty-five activities,

Explanation of Table 4.2a Notation and Formulae

Column 1 Lists the activities ordered 
by score. /=  I, L

Column 2 Gives the activity scores 
reduced by 2 because of the 
removal of Child 2. Si

Column 3 Converts activity scores to 
proportions of their 
maximum value: 2 x 7 4 =  148. Pi = Sj/mN

Column 4 Gives the complement of P,. 1 -P i

Column 5 Converts P, into activity 
logit x This conversion can 
be read in Table 4.2b. Xi = log[( 1 ~Pi)/Pi)

The activity logits are 
summed and averaged at the 
bottom of Col 5. x. = 2 Xj/L

i

Column 6 Gives the activity logit 
squared.

The variance of the activity 
logits is calculated at the 
bottom of Col 6 . U -  (^x?  - L x .2)l(,L- 1)

i

Column 7 Centers the activity logits by 
subtracting their mean. II * 1 X
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and makes the scale independent of sample level. These centered activity logits are the 
initial PROX calibrations shown in Column 7.

4.2.4 Linearizing Children Scores

Initial PROX attitude measures for the seventy-four children are obtained by transforming 
each child's score r to a proportion Pr of its maximum value (2 x 25 = 50) and then transforming 
this proportion to a logit scale by taking the natural log of P A  1 - P r). These transformed score 
logits are shown in Column 7 of Table 4.2c. Since they are already centered on the twenty- 
five science activities, no further centering is called for. Indeed, were we now to center the 
score logits on this sample of children, we would not only take an unnecessary step, but also 
spoil the connection we are building between the positions of children and items on the single 
line of the variable they share. At this point we have centered both item calibrations and the 
measures they imply at the same place, the center of the test, so that they have a common 
origin.

4.2.5 Removing Sample Dispersion

The initial activity calibrations in Table 4.2a must now be adjusted for sample disper-
sion. This is because the more dispersed a sample is in attitude, the more the scores they give 
a particular set of items will be similar, while the more similar a sample is in attitude, the more 
the scores they give these same items will be dispersed. In order to free the item calibrations

________ TABLE 4.2b ________
LOGITS FROM PROPORTIONS -------------------------7

•ORTION
P

LOGIT
log[P/(l-P)]

PROPORTION
P

LOGIT
log[/>/(l-/>)]

PROPORTION
P

LOGIT
log[P/(l-P)]

PROPORTION
P

LOGI
log[P/(l-

.01 -4 .60 .26 -1.05 .50 0.00 .75 1.10

.02 -3 .89 .27 -0 .99 .51 0.04 .76 1.15

.03 -3.48 .28 -0 .94 .52 0.08 .77 1.21

.04 -3.18 .29 -0 .90 .53 0.12 .78 1.27

.05 -2 .94 .30 -0.85 .54 0.16 .79 1.32

.06 -2.75 .31 -0 .80 .55 0.20 .80 1.39

.07 -2 .59 .32 -0.75 .56 0.24 .81 1.45

.08 -2 .44 .33 -0.71 .57 0.28 .82 1.52

.09 -2.31 .34 -0 .66 .58 0.32 .83 1.59

.10 -2 .20 .35 -0.62 .59 0.36 .84 1.66

.11 -2 .09 .36 -0.58 .60 0.41 .85 1.73

.12 -1 .99 .37 -0.53 .61 0.45 .86 1.82

.13 -1.90 .38 -0 .49 .62 0.49 .87 1.90

.14 -1.82 .39 -0.45 .63 0.53 .88 1.99

.15 -1.73 .40 -0.41 .64 0.58 .89 2.09

.16 -1 .66 .41 -0 .36 .65 0.62 .90 2.20

.17 -1.59 .42 -0.32 .66 0.66 .91 2.31

.18 -1.52 .43 -0.28 .67 0.71 .92 2.44

.19 -1.45 .44 -0.24 .68 0.75 .93 2.59

.20 -1.39 .45 -0 .20 .69 0.80 .94 2.75

.21 -1.32 .46 -0.16 .70 0.85 .95 2.94

.22 -1.27 .47 -0.12 .71 0.90 .96 3.18

.23 -1.21 .48 -0.08 .72 0.94 .97 3.48

.24 -1.15 .49 -0.04 .73 0.99 .98 3.89

.25 -1.10 .50 -0.00 .74 1.05 .99 4.60
When log[(l-/>)/P] is desired, log[(l-P)IP] = — log[/*/( 1 -/*)].



4 / ESTIMATION PROCEDURES 65

from their dependence on sample dispersion we must expand the initial centered item logits by 
a factor which increases with sample dispersion. If we are willing to work with the assumption 
that the sample can be satisfactorily described by a normal distribution, then the expansion 
factor needed to make this adjustment is

Y =  [(1 + W2.89)/(l-C/W8.35)],/4 = 1.22

TABLE 4.2c
I N I  U A L  P K U X  M E A S U R E S

m = 2, L = 25, AT=74
(I) (2) (3) (4) (5) (6) (7)

CHILD CHILD SCORE COUNTED COUNTED INITIAL
SCORE COUNT PROPORTION LOGIT LOGIT LOGIT SQD MEASURE

r Nr Pr=rlmL yr Nryr N ry 2 b f - y .
49 1 .98 3.89 3.89 15.13 3.89
48 1 .96 3.18 3.18 10.11 3.18
47 1 .94 2.75 2.75 7.56 2.75
46 1 .92 2.44 2.44 5.95 2.44
45 1 .90 2.20 2.20 4.84 2.20
44 1 .88 1.99 1.99 3.% 1.99
43 2 .86 1.82 3.64 6.62 1.82
42 2 .84 1.66 3.32 5.51 1.66
41 2 .82 1.52 3.04 4.62 1.52
40 3 .80 1.39 4.17 5.80 1.39
39 2 .78 1.27 2.54 3.23 1.27
38 2 .76 1.15 2.30 2.64 1.15
37 2 .74 1.05 2.10 2.20 1.05
36 2 .72 .94 1.88 1.77 .94
35 3 .70 .85 2.55 2.17 .85
34 3 .68 .75 2.25 1.69 .75
33 3 .66 .66 1.98 1.31 .66
32 3 .64 .58 1.74 1.01 .58
31 2 .62 .49 .98 .48 .49
30 3 .60 .41 1.23 .50 .41
29 3 .58 .32 .96 .31 .32
28 5 .56 .24 1.20 .29 .24
27 6 .54 .16 .96 .15 .16
26 4 .52 .08 .32 .03 .08
25 3 .50 .00 .00 .00 .00
24 4 .48 - .0 8 - .3 2 .03 -.0 8
23 1 .46 - .1 6 - .1 6 .03 - .1 6
22 .44 - .2 4 - .2 4
21 1 .42 - .3 2 - .3 2 .10 - .3 2
20 .40 -.41 -.41
19 2 .38 - .4 9 - .9 8 .48 - .4 9
18 .36 - .5 8 -.5 8
17 1 .34 - .6 6 - .6 6 .44 - .6 6
16 1 .32 - .7 5 - .7 5 .56 - .7 5
15 .30 -.8 5 - .8 5
14 2 .28 - .9 4 -1 .88 1.77 - .9 4
13 .26 -1 .05 -1 .05
12 1 .24 —1.15 -1 .15 1.32 -1 .15

N =  74 Sum = 47.39 92.61
Mean = .64 Variance = 0.85

P, = rlmL y = 'ZNryJNr V = (ZN ryi -  Ny.2)/(N -r 1)

y , = log[/V(l-P,)] y 2 = .41 fljy.2 = 74(.41) = 30.34

bt = yr V = (92.61-30.34)/73

= 0.85



66 RATING SCALE ANALYSIS

in which 2.89= 1.72, 8.35= 1.74 and 1.7 approximates logits from probits. The initial activity 
calibrations are expanded to their final values in Column 4 of Table 4.2d.

4.2.6 Calculating Errors of Calibration

Approximate standard errors for these PROX calibrations can be calculated from 

SEW,) = Y lm N K S /lm N -S iW  = Y[\lmNPji\ - P ,) ^  = 2.5 YKmNf1 «  .25

These standard errors for the twenty-five science activities appear in Column 5 of Table 4.2d.

4.2.7 Removing Activity Dispersion

The initial attitude measures must also be adjusted for the dispersion of the science activ-
ities. The expansion factor needed for this adjustment is

X  = [(1 + t//2.89)/(l — t/V/8.35)]w = 1.30

The initial attitude measures are expanded to their final values in Column 5 of Table 4.2e.

Explanation of Table 4.2c Notation and Formulae

Column 1 Lists child scores in order. r=  1, (mL — 1)

Column 2 Counts the number of 
children making each score. N r

Column 3 Converts child scores to 
proportions of their 
maximum value: 2x25 = 50. Pr = r/mL

Column 4 Converts Pr into a score 
logit yr. yr = log[/y(l - P r ) ]

Column 5 Multiplies the count by the 
score logit. Nryr

Column 6 Multiplies the count by the 
score logit squared. Nryi

Column 7 Lists the initial attitude 
measure for each score. b°r = y,

The sample mean and 
variance of these attitude 
measures are calculated at 
the bottom of Cols 5 and 6 .

y. = 'L N j JN
r

V = (ZN rrf -  Ny.2)/(N -  1)
r
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4.2.8 Calculating Errors of Measurement

Approximate standard errors for these PROX  measures can be calculated from 

SE(br) = X [m L/(ifm L-r))]'*  = X[llmLPr(l - P r)T  =  2.5X/(mLf! «  .45

These standard errors of measurement appear in Column 6 of Table 4.2e.

4.3 A PAIRWISE PROCEDURE: PAIR

4.3.1 Motivation for PAIR

The PROX  procedure just considered achieves its simple efficiency by assuming that 
attitudes are normally distributed among persons and items. The assumption of a normal 
shape makes it possible to use logit means and variances to estimate the person and item 
parameters separately. The decisive characteristic of Rasch models, however, is that they

________ TABLE 4.2d ________
FINAL PROX  CALIBRATIONS

m = 2, L = 25, 7V=74
(1)

ACTIVITY
NUMBER

i

(2)
INITIAL

CALIBRATION
d?

(3)
SAMPLE SPREAD 

EXPANSION 
Y

(4) 
FINAL 

CALIBRATION 
d,= Ydf

(5)
CALIBRATION 

ERROR 
SE(4)

5 1.84 1.22 2.24 .24
23 1.68 1.22 2.05 .23
20 1.44 1.22 1.76 .21

4 1.35 1.22 1.65 .21
8 1.31 1.22 1.60 .21
7 .89 1.22 1.09 .20
9 .57 1.22 .69 .20

16 .49 1.22 .60 .20
25 .45 1.22 .55 .20

3 .37 1.22 .45 .20
14 .37 1.22 .45 .20
6 .28 1.22 .34 .20

17 .16 1.22 .19 .21
22 .11 1.22 .13 .21
24 - .2 1 1.22 - .2 6 .22

1 - .2 5 1.22 - .3 0 .22
15 - .3 6 1.22 - .4 4 .23
2 - .5 2 1.22 - .6 3 .24

21 - .6 3 1.22 - .7 7 .25
11 - .7 0 1.22 - .8 5 .25
13 - .9 7 1.22 -1 .18 .28
10 -1 .13 1.22 -1 .38 .29
12 -1 .62 1.22 -1 .98 .36
19 -2 .0 6 1.22 -2.51 .42
18 -2 .79 1.22 -3 .40 .55

SE (</,) = Y[m N /S,{m N -Si)]'/i = Y[VmNPi( l - P i))'/!
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allow the complete separation of parameters whatever their distributions might be. This is 
done by rewriting the model in a conditional form in which the unwanted parameters cancel. A 
general approach to conditional estimation is developed by Andersen (1973). A simpler 
approach is to analyze items two at a time (Rasch 1960, 171-172; Choppin 1968, 1978). This 
pairwise approach uses person scores to remove person parameters from the calibration pro-
cedure. For dichotomous items this is done by finding all persons who earn a combined score 
of one on a particular pair of items and using the distribution of these persons’ successes 
between the two items to estimate the items’ difference in difficulty. After all available pairs 
are analyzed in this way, the resulting matrix of pairwise differences in difficulty can be reduced 
by least squares or maximum likelihood to a single set of item calibrations.

  TABLE 4.2e _____
FINAL PROX MEASURES

m = 2, L = 25, A/=74
(1) (2) (3) (4) (5) (6)

CHILD CHILD INITIAL TEST SPREAD FINAL MEASUREMENT
SCORE COUNT MEASURE EXPANSION MEASURE ERROR

r Nr b°r X br=Xb? SE(br)
49 1 3.89 1.30 5.06 1.31
48 1 3.18 1.30 4.13 .94
47 1 2.75 1.30 3.57 .78
46 1 2.44 1.30 3.17 .68
45 1 2.20 1.30 2.86 .61
44 1 1.99 1.30 2.59 .56
43 2 1.82 1.30 2.37 .53
42 2 1.66 1.30 2.16 .51
41 2 1.52 1.30 1.98 .48
40 3 1.39 1.30 1.81 .45
39 2 1.27 1.30 1.65 .44
38 2 1.15 1.30 1.49 .43
37 2 1.05 1.30 1.36 '  .42
36 2 .94 1.30 1.22 .40
35 3 .85 1.30 1.10 .40
34 3 .75 1.30 .97 .39
33 3 .66 1.30 .86 .39
32 3 .58 1.30 .75 .38
31 2 .49 1.30 .64 .38
30 3 .41 1.30 .53 .38
29 3 .32 1.30 .42 .38
28 5 .24 1.30 .31 .36
27 6 .16 1.30 .21 .36
26 4 .08 1.30 .10 .36
25 3 .00 1.30 .00 .36
24 4 -.0 8 1.30 - .1 0 .36
23 1 -.1 6 1.30 -.21 .36
22 -.2 4 1.30 -.31 .36
21 1 -.3 2 1.30 - .4 2 .38
20 -.41 1.30 -.5 3 .38
19 2 -.4 9 1.30 -.6 4 .38
18 -.5 8 1.30 -.7 5 .38
17 1 - .6 6 1.30 - .8 6 .39
16 1 -.7 5 1.30 - .9 7 .39
15 -.8 5 1.30 -1 .10 .40
14 2 - .9 4 1.30 -1.22 .40
13 -1.05 1.30 -1 .36 .42
12 1 -1.15 1.30 -1 .49 .43

SE(fcr) = X[mL/r(mL - r ) ]w = X[\lmLPr( \ - P r) ^
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This PAIR procedure can be generalized to accommodate the Rating Scale and Partial 
Credit models. Person parameters are cancelled by grouping persons by their total score on 
each pair of items and using the distribution of choices within these score groups to estimate 
the differences in the difficulties of the two items. The PAIR procedure requires no assump-
tions about the distribution of attitudes because it eliminates the person parameters from the 
calibration of the items entirely. A special advantage of PAIR is that it can be used to analyze 
the incomplete data matrices which result when some items are not taken by some persons in 
the calibration sample. This is particularly useful when calibrating items into an item bank 
from data in which different persons take different (but overlapping) test forms.

4.3.2 The PAIR  Procedure

The Rating Scale model defines the probability of person n responding in category x  to 
item i as

*ni
exp 2  [p„—(»,+•*>)!

Ttni* = -s  J=\ -------------------  (4.3.1)
2  exp2  [|3n- ( 8 , + Ty)]

*=0 j=0

Since the responses to any pair of items / and j  are modelled as stochastically independent given 
their parameters, the probability of person n responding in category x  to item i and category 
y  to item j  is

TTXy = '^nix'^iyv

and the probability of person n responding in category y  to item t and category x  to item j  is

TTyx = TT„/y TTjjpr

where we have simplified the subscripts of TTxy and TTyx by using the first subscript to imply 
item i and the second to imply item j .  The probability of person n responding in category x 
to either one of these two items and in category y  to the other is

TTxy 4* TTyx

Thus, the conditional probability of person n responding in category x  to item i and y  to item 
j  given that they respond in category x  to one of these two items and category y  to the other 
is

. _  TTxy = ______ exp[(y—x)8,]_______  (4 .3 .2)
TTxy + TTyx exp[(y-*)&,] + exp[(y-x)87]

This conditional probability contains only the item parameters 8, and 87. We see that if 
person n makes a score of x + y  on this pair of items by responding in category x  to one of them 
and category y  to the other, then the modelled probability of the response x  being made to item 
i rather than to item j  does not depend on the person’s attitude p„, nor on the "threshold”
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parameters t/ ,  t*, . . . , r„ but only on the difference between the item difficulties 8, and 8,.

Similarly

. tty* = exp[(y-x)8y]_______
yx TTxy + TTyx exp[(y -  jc)8,] + exp[(y -  x)8y]

The ratio of these conditional probabilities irjy and TTyx gives us

TT'xy/TT'yx = exp[(y-*)(8, - 8y)] (4.3.4)

This leads to a simple procedure for estimating the difference between 8, and 8y. The 
conditional probability TTxy can be estimated by Cxy/(Cxy + Cyx), where Cxy is the number of 
persons responding in category x  to item i and also in category y to itemy, and Cyx is the number 
of persons responding in category y to item i and category x  to itemy. Similarly, TTyx can be 
estimated by CyJiC^ + Cyx). Thus, (8, - 8y) can be estimated by (logQv- logCy,)/(y -x).This 
means that each (Cxy,Cyx) pair provides an estimate of (8, - 8>j). These frequencies can be 
collected in a matrix like the one in Figure 4.3a.

This is the data matrix for the PAIR procedure. Each entry in the matrix is a count of 
the number of persons who make an x  on item / and a y on item j .  Only the shaded portions 
of this matrix contain information about the relative scale values of the L items. Each off- 
diagonal pair of frequencies in the (i, y)th submatrix provides an estimate of (8, -  8y) These 
estimates can be averaged and the resulting estimate dy stored in a matrix of pairwise differ-
ences. Scale value estimates for the items which are centered on the questionnaire can then 
be obtained from

di = 'Z d iiI L  i= l ,L  (4.3.5)
j - i

in which </„=0 and d. = 0 .

If some dy are missing, they can be initialized at zero and improved from temporary values 
for di by setting them equal to (</, -  dj) at each iteration until subsequent improvements in the 
di become too small to matter.

A maximum likelihood procedure can also be used to calibrate the L  items. For this we 
define the number of persons who make an x  on either one of items / andy, and a y  on the other 
as

= Cxy + Cyx

The probability of these persons being made up of persons who make an x  on item i 
and Cyx persons who make the x  on item y is

j r . .  =  ( ^ x y )  j r ' c *y  i r * c yx11 (/xy I r* I n xy ••yx
\c * y /  (4.3.6)

_ / a O  exp[CJ(y(y -x )8,] exp[Cy,(y -x )87]
\ Cxy) [exp(y-x)8, + exp(y-x)8>]A,jry
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If these responses could be considered conditionally independent, then the likelihood of 
the entire observation matrix would be

L -l L  m-1 m

a = n n n n ^
i= l  j = i + l  x = 0 y = x  + l

with log likelihood

L -l L  m-1 m

* = 2  2  2  2  lo 8  %
i = 1 j = i  + 1 x  - 0  y - x  + 1

(jxy

N :xy

'*y
+ (y -x )C Xyhi + (y -  x)Cyxhj (4.3.8)

Ntylog exp[(y-x)8,] + exp[(y-x)8y]

Even though these pairwise responses are not independent over items because responses to 
any particular item are reused in every comparison of that item with other items, nevertheless, 
the symmetry of this dependence preserves the utility of pairwise estimates obtained in this 
way.
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Differentiating the log likelihood with respect to 8, gives

F ~  = 2  E  £  (y-*yCxy “ S E E  (y-tiNxyTtlydo i j  X y  j  X y

and F —  = - 2  X 2  (y-Jf)2 N ^T r^ l-T r ly )
00; j  x  y

from which the 8; can be estimated by

pin
(4.3.9)

Unfortunately, the asymptotic error expression SE(d,) = [ —F'] 44 does not apply in this case 
because the pairwise responses are not independent over items.

4.3.3 Comparing PAIR and PROX Calibrations

The PAIR procedure has been used to calibrate the twenty-five science activities from the 
data matrix in Figure 2.4b. The calibrations obtained are shown in Table 4.3, together with 
the calibrations from the PROX procedure. The two sets of estimates are plotted against each 
other in Figure 4.3b.

Figure 4.3b shows that for all but three of the twenty-five activities the PROX and PAIR 
calibrations are similar enough to be considered equivalent. Even the status of Activity 18 
“Going on a picnic” which shows a difference of 0.6 logits between PROX and PAIR is not 
really objectionable given the large standard error of the PROX  estimate. But the calibrations 
of Activities 5 “ Finding old bottles and cans” and 23 “ Watching a rat” are clearly inconsistent.

We are already familiar with these two items from our study of the original data matrix in 
Figure 2.4b. We saw in Chapter 2 that the pattern of responses elicited by these items is 
inconsistent with the generally orderly structure of these data. These two items do not fit with 
the other twenty-three activities, and the discrepancies between the PROX and PAIR attempts 
to calibrate them brings this out.

4.4 AN UNCONDITIONAL PROCEDURE: UCON

The third estimation procedure we apply to the science data from Chapter 2, is 
UCON. This unconditional maximum likelihood procedure is based on Wright and Pancha- 
pakesan’s (1969) estimation algorithm for the Dichotomous model (see Wright and Stone 1979).
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TABLE 4.3
COMPARING P R O X  AND P A I R  CALIBRATIONS

m = 2, L = 25, N = 74
ACTIVITY CALIBRATION

ACTIVITY CALIBRATION ERROR DIFFERENCE
NUMBER PROX PAIR PROX PAIR-PROX

J 2.24 1.59 .24 -.6 5
2 3 2.05 1.38 .23 - .6 7
2 0 1.76 1.53 .21 - .2 3

4 1.65 1.83 .21 .18
8 1.60 1.60 .21 .00
7 1.09 1.19 .20 .10
9 .69 .82 .20 .13

16 .60 .61 .20 .01
2 5 .55 .69 .20 .14

3 .45 .62 .20 .17
14 .45 .60 .20 .15

6 .34 .38 .20 .04
1 7 .19 .30 .21 .11
2 2 .13 .19 .21 .06
2 4 - .2 6 - .1 9 .22 .07

1 - .3 0 - .4 2 .22 - .1 2
15 - .4 4 - .3 9 .23 .05

2 - .6 3 - .5 4 .24 .09
21 - .7 7 - .7 5 .25 .02
11 - .8 5 -1.11 .25 - .2 6
13 -1 .18 - 1.00 .28 .18
1 0 -1 .38 -1 .54 .29 - .1 6
12 -1 .98 -2.31 .36 - .3 3
1 9 -2.51 -2 .29 .42 .22
18 -3 .4 0 -2 .77 .55 .63

M ean 0.00 0.00 .00
S .D . 1.41 1.28 .27

4.4.1 The UCON  Procedure

We begin with the Rating Scale model which defines the probability of person n responding 
in category x  to item i as

exp 2 ) tPn-fSi + T,)]
<TT- = ____ Ll°_____________
" nix m k

2  exp 2  [pn-fB. + T,)]
k= 0  j= 0

(4.4.1)

The likelihood of the N x L  data matrix ((*„,)) is the continued product of the probability 
itnix over the N  persons and L  items

N  L

A = P{((x„i)) ;(P„) ,(8,) ,( t )} = n n
n = l  i = / (4.4.2)

N L xni
e x p S S S  [pn- ( 8 , + T/)]

n i i= 0 _________________

N  L

nn 2  exp 2  [Pn _  (8/ + T/)]
L *=0 j= 0
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________  FIGURE 4.3b________
PROX vs PAIR CALIBRATIONS

Taking logarithms

N  L  Xni N  L. Xni N  L  Xni

\  = logA = £  £  £  p„ -  £  £  £  8, -  £  £  £
n i  j —0 

N  L

- £  £  log

n i  j= 0 n i j= 0

£  exp £  [ p „ - ( 8 , + T 7) ] l  
_k= 0 j= 0  J

(4.4.3)

Xni Xni L

I f  £  Pn — Xu/Pm £  8 / =  x j b i ,  t 0 =  0, r„ =  £  x ni, the score of person n on the L-item
j= 0  j - 0  i = I

test, S y  is the number of persons who respond in or above category j  to item i, and
N  m

X  %ni S y  Sf+, then
n = 1 j  = I
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N  L Jtni N  L

X  2  X  P/. =  2  2  X ni P„
n = l  i = l j = 0  n = i im j

=  2  r n Pn
n — I

N  L  Xmi L N

2  2  2 s . = 2 2  xm 8,
n = I i = I j  = 0 /= / «■/

L m

= 2  2 ^ s ,

2  Sj+8, 
#•=/

where 5,+ is the score of item i on this sample of N  persons, and

m L

2  2  2  f j  =  2  2  s v  t j
n = I i = I j = 0  j =/ i m I

= 2  S +Pj
j =i

where 5 +j is the total number of responses (counted over all N  persons and all L  items) in or 
above category j .

The log likelihood can now be written

N  L  m N  L

* = 2 '-«Pn -  2 -S/+8, -  2 ‘S+yr, -  2 2  >og
J - l

2  exp 2) [ ^ - ( 5 ,  + Ty)
k = 0  j= 0

(4.4.4)

The form of this log likelihood is decisive for the practice of measurement. Person score 
r„ appears only once in this expression multiplied by its parameter (3„. Item score 5,+ appears 
only once multiplied by its parameter 8,-. Category score S +J appears only once multiplied by 
its parameter ty. This separate pairing of statistics and their associated parameters is what 
permits the objective comparison of persons, items and thresholds.
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In order to define maximum likelihood estimates, the log likelihood is differentiated with 
respect to each of its parameters. This differentiation is simplified by

d log 2  exp £ [ 0 * -  ( 8, + t,)]k=0 j-0

d log
m k ]
2  exp 2t3». “  ( 8,+Ty)]k — 0 j —0____________ J

d 8,

d log
m k 1
2 exp ZlVn -  ( 8, + t,)] k-0 j-0_____________J

d tj

2  k T*nikk-0

~ 2  k T*nik k—0

2 ^  nik k-j

With these results the first derivatives of X with respect to p„, 8, and t,- are

3X

dk
as,

dk 
dr i

= r„ 2  2  k^k i k-0

N m
~ S j +  + 2  2  k  ^ n i k

n k - 0  

N L m
- s +j + 2  2  2  T*nikn i k=j

(4.4.5)

The expression 2  k^mk is the expected value of jc„/. When this is summed over items it
k-0

gives the expected score of person n. When summed over persons it gives the expected score
m

of item i. The expression 2™ nik is person n's probability of responding in or above category

j  to item /. When summed over persons and items it gives the total number of responses 
expected in or above category j.

The second derivatives of X with respect to p„, 8, and t j  are

m m
2  k2T*nik ~  ( 2  ^n ik ?

d2k £
^ i  ~ i k-0 k-0

d8? r

£  -  - s iCfTi n i

m m l
2  ~  ( 2  ^ n ik f_k-0 k-0 J

2  -  (2 1Tniky ]k-j k-j J



4 / ESTIMATION PROCEDURES 77 

As a result, the unconditional estimation equations for the Rating Scale model are

b<r' +l> = b<r'> -
r - i l k m

I k= 0  ___
L

-2 2  -  ( 2 * n ii) 2
k = 0 k = 0

r — 1, A f-1

-

A/-/ m

- s i+ + 2 ^ , 2  m*
r * = 0

M -l

- 2 , N r 2  k2 m  -  ( 2 * w
k —0 k = 0

M -l L m

1 = 1, L (4.4.6)

- s . ,  + 2 ^ 2 2
r i k  =7

A#-/ L  

- 2 ^ , 2 2 n a  -  ( 2 w  
*=> *=>

7= 1, rn

where b ^  is the estimated ability of a person with score r after t iterations, eft0 is the estimated 
scale value of item i after t iterations, is the estimated value of threshold j  after t iterations,

k m g
M = m L, Prik= zx p ^ ,(b r- d t -h j)  / Z iC xp^A br—di—hj) and d. and h. are reset to zero after

j=0 g=0 j=0
each iteration.

Asymptotic standard errors can be estimated from the denominators of the last iteration.

i -*»

S W r )  

SE (4) 

SE{hj)

~ L  m  m 1
2[2 m* - (2kPrik)2}I k k J

M -l m  m l
2 ^ t 2  w *  -  & p riky]
r k k J

M -l L  m  m  "1
i K l i l  Prik ~  ( 2 ^ ) 21
r i k= j k= j J

(4.4.7)

-'A

4.4.2 UCON  Estimates for the Science Data

We have also applied UCON  to calibrate the twenty-five science activities and to measure 
the attitudes of the seventy-five children in Figure 2.4b. The results of the UCON calibration 
are shown in Table 4.4a, together with the PROX  estimates from Section 4.2.5 and the PAIR 
estimates from Section 4.3.3.

Item Estimates The PROX  and UCON item estimates produce the same ordering of the 
science activities. This is because both procedures use the vector of activity scores at the 
bottom of Figure 2.4b. The PAIR procedure does not use these activity scores, but calibrates 
the activities by considering them two at a time. The UCON estimates are plotted against the 
PAIR estimates in Figure 4.4a.
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___________  TABLE 4.4a____________
COMPARING PROX, PAIR AND UCON 

CALIBRATIONS

m = 2, £. = 25, Af=74
ACTIVITY
NUMBER

PROX 
d, s,

PAIR
d,

UCON*
d.

5 2.24 .24 1.59 2.28 .22
23 2.05 .23 1.38 2.05 .21
20 1.76 .21 1.53 1.72 .20
4 1.65 .21 1.83 1.64 .20
8 1.60 .21 1.60 1.57 .19
7 1.09 .20 1.19 1.04 .18
9 .69 .20 .82 .66 .18

16 .60 .20 .61 .56 .18
25 .55 .20 .69 .50 .18
3 .45 .20 .62 .39 .18

14 .45 .20 .60 .39 .18
6 .34 .20 .38 .29 .19

17 .19 .21 .30 .15 .19
22 .13 .21 .19 .08 .19
24 - .2 6 .22 - .1 9 -.2 9 .20

1 - .3 0 .22 - .4 2 -.3 7 .20
15 - .4 4 .23 - .3 9 -.45 .20
2 - .6 3 .24 - .5 4 -.6 6 .21

21 - .7 7 .25 -.7 5 - .8 0 .22
11 - .8 5 .25 -1.11 -.8 9 .22
13 -1 .18 .28 -1.00 -1.21 .24
10 -1 .38 .29 -1.54 -1.40 .25
12 -1 .98 .36 -2.31 -1.93 .30
19 -2.51 .42 -2 .29 -2.35 .35
18 -3 .40 .55 -2.77 -3.00 .46

Mean 0.00 0.00 0.00
S.D. 1.41 1.28 1.35

*UCON estimates have been adjusted for bias by multiplying by (L -  1)1 L = .96.

When the differences between the UCON and PAIR estimates are compared with the 
UCON standard errors we see that for most activities the difference is less than a standard 
error. While these standard errors cannot provide significance tests because the alternative 
estimates are based on the same data, they do give us an order of magnitude for judging the 
differences between procedures. The only activities with substantially different UCON and 
PAIR estimates are activities 5 and 23 for which the differences are more than three standard 
errors.

When data fit the Rating Scale model we expect these three estimation procedures to 
produce similar results. While the PROX and UCON estimates are very similar, the PAIR 
procedure produces substantially different estimates for Activities 5 and 23. This is evidence 
against the idea that these activities define the same liking for science variable as the others.

Person Estimates UCON also provides an estimate of each person’s liking for science. These 
estimates are shown in Table 4.4b together with the PROX estimates from Section 4.2.7. The 
two procedures produce identical orderings of the seventy-five children corresponding to their 
ordering by score on the questionnaire. The differences between their estimates are shown 
on the far right of Table 4.4b. These are largest for high-scoring children and smallest for low- 
scoring children. Even for the highest-scoring children, however, the differences are small in 
comparison to the standard errors of measurement.
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Threshold Estimates Figure 4.4b shows the category probability curves estimated by UCON 
for the science questionnaire. The shape of these curves is fixed by the threshold estimates 
hx = -  .8 and h2 = + .8  and is the same for all twenty-five activities. The location of this pattern 
of curves on the liking for science variable is given by </,- and varies from activity to activity. In 
Figure 4.4b, the probability curves are centered on c/, = + .5 and so describe the way in which 
the estimated probabilities of responding “ Dislike” , “ Not Sure/Don’t Care”  and “ Like” vary 
with attitude for an activity with a scale value estimate dt= + .5 logits.

Category probability curves obtained in this way enable each child's attitude estimate b„ 
to be interpreted in terms of activities they are expected to like, activities they are expected 
to be ambivalent about and activities they are expected to dislike. We will use these expec-
tations in Chapter 5 to investigate unusual response patterns.
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______________  TABLE 4.4b ______________
COMPARING PROX  AND UCON MEASURES

m = 2, £. = 25, N = 74
SCORE COUNT PROX UCON DIFFERENCE

r N, br s br PROX-UCON
49 1 5.06 1.31 4.51 1.02 .55
48 1 4.13 .94 3.77 .74 .36
47 1 3.57 .78 3.31 .62 .26
46 1 3.17 .68 2.97 .55 .20
45 1 2.86 .61 2.70 .50 .16
44 1 2.59 .56 2.47 .47 .12
43 2 2.37 .53 2.26 .44 .11
42 2 2.16 .51 2.08 .42 .08
41 2 1.98 .48 1.91 .40 .07
40 3 1.81 .45 1.75 .39 .06
39 2 1.65 .44 1.60 .38 .05
38 2 1.49 .43 1.46 .37 .03
37 2 1.36 .42 1.32 .36 .04
36 2 1.22 .40 1.19 .36 .03
35 3 1.10 .40 1.07 .35 .03
34 3 .97 .39 .95 .34 .02
33 3 .86 .39 .83 .34 .03
32 3 .75 .38 .72 .34 .03
31 2 .64 .38 .61 .33 .03
30 3 .53 .38 .50 .33 .03
29 3 .42 .38 .39 .33 .03
28 5 .31 .36 .28 .33 .03
27 6 .21 .36 .18 .32 .03
26 4 .10 .36 .07 .32 .03
25 3 .00 .36 -.03 .32 .03
24 4 -.1 0 .36 -.1 4 .32 .03
23 1 -.21 .36 - .2 4 .32 .03
22 -.31 .36 -.3 5 .32 .04
21 1 -.4 2 .38 -.45 .33 .03
20 -.5 3 .38 - .5 6 .33 '  .03
19 2 -.6 4 .38 -.6 7 .33 .03
18 -.7 5 .38 -.7 8 .33 .03
17 1 -.8 6 .39 -.8 9 .34 .03
16 1 -.9 7 .39 - 1.00 .34 .03
15 -1.10 .40 -1.12 .35 .02
14 2 -1.22 .40 -1.24 .35 .02
13 -1.36 .42 -1.37 .36 .01
12 1 -1.49 .43 -1.50 .37 .01

4.5 ESTIMATION PROCEDURES FOR THE PARTIAL CREDIT MODEL

Our detailed discussion of how to calibrate items and measure persons for the science 
questionnaire used the Rating Scale model. Now we outline PROX, PAIR, CON  and UCON 
procedures for the Partial Credit model.

4.5.1 PROX  

Let
xu = log[7V, / T0] 

log[r / (M -r)]

i= \,L  

r=  1,A/ - 1

(4.5.1)

where Ty is the number of persons selecting category j  of item i, r is a score a person might
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_____________  FIGURE 4.4b______________
CATEGORY PROBABILITY CURVES FOR 

THE SCIENCE QUESTIONNAIRE

L

make and When no response is made in category j  to item i, i.e., Ty—0, then the
I

difficulty of the j 'th  step in item i cannot be estimated, and the scoring of item i must be reduced 
by not counting the j 'th  step.

The test and sample variances of xy and yr are

U =

V =

L  mi

2 2  (*u -x -V
‘ J___________

M -1
(4.5.2)

M-l
2 % - 7 ) 2

r____________
N -  1

L  m i M ' '

where jr.. = / M, Nr is the number of persons with a score of r and y. = 2  NryJN  is the
i j  r~l

sample mean.
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X  =

Y =

1 + LV2.89 
1 -  UVI8.35

1 -I- V/2.89 '  
1 -  C/V/8.35

(4.5.3)

where 2.89 = (1.7)2, 8.35 = (1.7)4, and division by 1.7 approximates probits from logits. 

This yields the PROX estimates

dy = Y(Xy -  x..)

br = X y r

(4.5.4)

with standard errors

SE (dy) = Y\ T ,,, + Tu
(TUJ(Ty)_ (4.5.5)

SE(br) = X
M

4.5.2 PAIR

The Partial Credit model gives the probability of person n scoring x  on item i as

Ttnix = exp(xp„ -  £  8l/() / ¥„,•
h=0

(4.5.6)

where 8,0=0 and is the sum of all numerators. To develop a PAIR procedure for the Partial 
Credit model we consider the probability of person n scoring x  on item i and y on a second 
item j. If we can assume that responses to these two items are stochastically independent 
given their parameters, then

^  nixjy 'Rnix ^  njy

exp[(x+y)p„ -  £  8,* -  ̂ 8̂ ] (4.5.7)
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Similarly, the probability of person n scoring w on item i and z on item j  is

'ttn iw jz ~  "ttniw t t r y z  M 5  g\

expKw + z l p . - f  8,/. - E M
_   h_______ h

A p  A px ni * nj

If we now let w = x — 1 and z= y+  1, so that (w + z) = (x+y), then the conditional probability 
of person n responding (jr.y) to items i and j ,  given that they respond either (x,y) or (w,z) is

— Ttnixjy  I  ( ^ n ix jy  "b '^ n iw jz l (A  5

exp( - 1 8 ,., -  J  bJh)
____________________ h h

X V  w z

e x p ( - 2 8 ,7 ,- Z  8Jh) + e x p ( - 2 X  -  ̂ X )h h h h

Similarly

^ i w j z  n lw jz n ixjy ^ n i w j z )  ( 4  5  1 0 )

w z

e x p ( - S 8,v ,-S  8jh)  h h ________

e x p ( - i X “ 5 X >  + e x p ( - £ s ih ~Yfijh)
h h h h

Notice that the person parameter (3„ cancels out of these expressions, so that these conditional 
probabilities are a function of item parameters only.

x w z y
Because w = x -  1 and y = z -  1, ^ X  = ^ X  + 8,* and I jjX  = ^ X  + S7Z, so

Tt'iwjz 1 'n'ixjy = TtniwjjTtmvy = exp(8* - 8,z) (4.5.11)

This provides a simple way to estimate the difference between 8 iJt and 8jz because 'TT,>;> can 
be estimated by

njxjyKnixjy + Hityjz)
and Tt'wjz can be estimated by

niwjAnixjy tlfwjv

where n^jy is the number of persons responding (x,y), and niwjz is the number of persons 
responding (w,z) to items / and j. It follows that

'tt iwjj^ ixjy == niwjJnixjy

exp(8i*-87z) =  niwjJnixjy

8 - 8  =  \ogn. . -  \ogn. .ix jz 6  >*n *w
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This relation can be used to estimate the differences = logniwjz -  logn^jy *** 8 te -  hjt from the 
counts rtujt. Then these differences can be used to estimate the item steps

L  rrtj

d u  =  2 2 4 *  /  M
j  Z

for which d.. = 0. If some d ^  are missing, they can be initialized at zero and improved from 
temporary values for the da until subsequent improvements in the d^ become negligible.

A maximum likelihood procedure can also be used. The probability of NxyWt persons 
being made up of n persons who respond (x.y), and niwJz persons who respond (w,z) to items 
i and j  is

TTxywz
N,

^ 1 ( T r l o y ) " ™  ( T r l j , y iw jz

Nxywz

*ixjy

exp exp îwjz\ 2 s,/. "I- 2 S//I

exp^-2s,/,-2Sy/.j + exp^-28,7,-2 Sy*jj
*xywz

(4.5.12)

If these responses were independent, then the likelihood of the observation matrix would
be

L  — l  L  m i  n t j — I

a - n n n n *
,' = / j —i+ l  x - l  y = 0

with log likelihood

X =  lO gA  =  2 2 2 2  lo g  TTxywi
i j  x y

= 2 2 2 2 -  nixjy( 2  8, a + t h j h) -  n J t  blh + tb j t  
I J  *  J  l  \  bcjy /  \  A * /  \  A A

exp -  2 8 ,/. “  + exp^ -  2 )8ih -  2  8>fcj  J

(4.5.13)

Even though the pairwise responses are not independent over items because responses to a 
given item are reused in every comparison of that item with every other item, the symmetry 
of this dependence preserves the utility of estimators derived as though the pairwise responses 
were independent.
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Differentiating this log likelihood with respect to 8* gives

F = rsr = -  + 'Z'Z Nxywz TTixj
J  y j  y

n2\
f ’ =  —  =  -  y y  n  i t*  ( i -  t t*  )1 ' xyw z 11 tx/y V1 ixjyJxyw z " ix jy  v " ix jy /

J y

a8i 

38*

from which 8* can be estimated by

Fit)
dlt +1) = (fit) -  -—  w “ /T'fr)

Unfortunately, the asymptotic error expression SEW*) = [ - F ']*44 does not apply in this case 
because the pairwise responses are not independent over items.

4.5.3 CON

A  third estimation procedure for the Partial Credit model is the fully conditional procedure 
CON. We begin with the conditional probability of the response vector (jc ,) given score r

exp( -  2  2  V
P{(xf);((8 &))|r} =     (4.5.14)

2  e x p ( - 2 S  V(*h) i j=0

where 8 lO= 0  and 2 ) >s the sum over all response vectors (xf,) which produce the score r.
(X h)

The conditional probability of responding in category k to item i given score r is

/  k \  r-k /  L xk
expl -  J  8J  j  expl -  J  2 X

\  j  =  0  J  (XH+i)  \  h ± i j = 0
rik

S f e x p  - t O  " 2  exp -  t
« = 0 (  \  > = 0  /  (x h * i)  \  h * i j = 0

expf -  X  8tfj 'Yr-Jt.i

2  expf — X st/ ) 'Yr-*./

(4.5.15)

\  J m0 

k
exp( -  X  8& J yr.u

yr
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r-k

where 21 >s the sum over all response vectors (*/,*,•) which exclude item i and produce the
(X h * i)

score r - k .

The conditional likelihood over N  persons with various scores is

a = n ^  J
exp( -  2  2  8y) /  Yr 

i  j = 0  / (4.5.16)

= exp
N  L X n

n i j  — 0

M-l

n  ( y f r

L N  M-l

where M  = I I  Yr = HI (Yr)*̂  an<* N r is the number of persons with a particular score
i n  r

r. Taking logarithms

L  m j M  — I

X -  logA = - 2  2  s i f i y  ~  2  Nrlogyr
j  j - i  '

(4.5.17)

where Sy is the number of persons responding in or above category j  to item i so that
N  x„i nti

2 2  ty -  2  s fa .
n j —0 j = l

The first derivative of the log likelihood with respect to by is

= _ 5  V  N r(*Ir
<% u r  Yr U «,

M -l m,
= ~ Sy + 2 W r2 ^ r/*

r *=>

(4.5.18)

This is the estimation equation for 8,y. Notice that *s lhe probability of making a score
k - j

of j  or better on item i given a score of r.

The second derivative is

(4.5.19)

4.5.4 t/CON

The easiest procedure for estimating the parameters of the Partial Credit model, after 
PROX, is the unconditional maximum likelihood procedure UCON. UCON produces essen-
tially the same results as CON. The likelihood of the data matrix ((*„,)) is modelled to be the 
continued product of the unconditional probabilities Trnix over n and i
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N  LA = tin TT/.U
N  L  Xu j

e x p ^ S  Z ( p n- 8i,)
______ n i j  = 0____________

N  L  T *

2 exp2 (Pn- 8j/)
* = 0  7 =  0

nn

(4.5.20)

Taking logarithms

N  L  N  L  x„i N  L

X -  lO g A  =  -  Z Z  2  8  (j -  S J l O g
n i n i j —I n i

2 e x p ^ (P n- 8y) 
k=0 j=0

(4.5.21)

Xn i -»/if
in which Z  8,j = 5)8„- because 8®=0 . 

7=0 7=1

To simplify this log likelihood we note that 2  8// is the sum of the difficulties of the steps
j=i

in item i completed by person n. These completed step difficulties can be summed over all
N Xni

N  persons to obtain Z  ̂  by, the sum of the difficulties of all steps completed by the sample
n j  = l

of N  persons. Since Sy is the number of persons completing step j  in item i, this sum can be
N  Xni m i

rewritten Z Z & o  = Z
n J = l  j = l

L

With this simplification and 2 \xni=r„ the log likelihood becomes

N  L m , N  L

* = S '/tP* -  Z  'Z S fiv  -  *Og
n i j  = I n i

S e x p S ( P n- 8y)
_k=0 j= 0

(4.5.22)

The distinguishing feature of this expression with respect to estimation and measurement is 
that person score r„ appears only once, multiplied by its parameter p„, and item scores {Sy) 
appear only once, multiplied by their parameters (8y).

The first and second derivatives of X with respect to 3„ and 8y are simplified by

d log E e x p 2 (P n -8i,)
*  =  0  7 = 0

dp„

Z  k exp 2  (P „ - 8 ,y)
k = 0_______ j  = 0_________

m, k

2 exp2 (P « -8y)
k = 0 j= 0

n tj

= Z  kTTnik
k=0
mi
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and

d  log Z  exp Z  0 « - 8 ih)
k= 0 h= 0

d b y

- Z  exp Z  0 " -  8,7.)
k = j h = 0_________

Z  exp 2  (pn- 8,7.)* = 0 /i=-0

21 *̂ nik 
k = j

in which the difficulty by of step j  appears only in those terms for which k 9 j  so that the derivative
m mi m,

of 218,* with respect to by truncates the summation from 21 t0 21 •
k = 0 k  = 0 k = j

With these results the first derivatives of X with respect to 0„ and b y  are

n = l,NdX V  V  t—  = r„ -  2j  2j  k TTnik
0Pn i *=/ (4.5.23)

dX c v  V
aS! V 2 j  2 j  ^n ikOOy „ k-j

In the first estimation equation, Z  kram k is the number of steps we expect person n to
k = l

complete in item »*. When summed over items this becomes the number of steps person n is 
expected to complete on the L-item test, that is, their expected score.

In the second equation Z  'I r ‘s the probability of person n completing at least j  steps in
k —j

item t. When summed over persons this becomes the number of persons expected to complete 
at least j  steps in item /, that is, the expected value of Sy. This second estimation equation 
can also be written in terms of the number of persons Ty scoring./ on item i  ( T y = S y —Sj j+i ) .  
This alternative representation may be computationally convenient. The estimation equations 
for a three-step item, for example, can be written

r r -  = (Z ^m s-T ii)  + ( Z ^ a - T a )  + ( 2 X / /  -T „ )  = 0
d\
dbji

_ax
d b i2

d\
dbu

N N N

N N

7 T  = (Z ^n iS -T u )  + (21 Ttna-Ta)

N

TT- = (Z^niS-Tis)

= 0 

= 0

N

Solving for b a  reduces the estimation equation for b a  to Z ^ n a — T a -  Solving this in turn
N

reduces the estimation equation for 8,7 to Z ^ m i  = T,/.
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The second derivatives of \  with respect to p„ and 80- are 

a2\ Z- r  "21 m<
= ~ 2 \  ZjPTtmk ~  ( 2  kTTniky

Opn i L*=' * - /

as*
N  r  m i  m (

=  -  S  Z  T*nik ~  ( ' Z ' t t n i k ?
n \_k= j k = j

(4.5.24)

The UCON  estimation equations can be improved by 

b<rt+l> = b<r'> -

L  m i

r  Z , kP &
_____ i l c —l

*<+» = (Q}> -

L  m i m i

- 2  % v m - ( 2 k m
i k = i  k = i  (4.5.25)

M-l m,
- s ff + E k 2  m

_____________ l___________
M-l  I” m/ mi

-  2X - (E w
r  L*=V k = J

where && is the estimated probability of a person with a score of r responding in category k 
to item / after t iterations and N r is the number of persons with score r. The mean step 
difficulty d.. is reset to zero at each iteration to maintain a fixed origin.

Asymptotic standard errors can be estimated from the denominator of the last iteration

SE (br) =

SE(dy) =

L mi mi
2 ( 2  k 2Prik -  ( 2  k P r i t f )

i k= 1 k= 1

~ M- l  mi  mi  ~1

2 K ( 2  Prlk -  ( 2  PrikV )
_ r *=y k= j J

]
-'/i

(4.5.26)

In Chapters 6 , 7, 8 and 9 we will apply UCON  for the Rating Scale and Partial Credit 
models to calibrate items and measure persons on four different instruments, c r e d i t , the 
computer program we use to do this can be obtained from the MESA Psychometric Laboratory, 
Department of Education, University of Chicago, 5835 Kimbark Avenue, Chicago, 60637.



5 VERIFYING VARIABLES AND 
SUPERVISING MEASURES

5.1 INTRODUCTION

The purpose of a measurement model is to extract from suitable data a useful definition 
of an intended variable and then to measure persons on this variable. The model is constructed 
to govern our use of data according to the characteristics we require of a measure and to show 
us, through the exposure of discrepancies between intention and experience, where our efforts 
to measure are threatened. In Chapter 3 we described five potentially useful measurement 
models and in Chapter 4 we outlined some procedures for calibrating items and measuring 
persons according to these models. The questions to which we sought answers were

1) Where is item i  located on the variable? (the item’s calibration dD
2) How precise is this calibration? (the modelled error o f calibration s,)
3) Where is person n located on the variable? (the person’s measure b„)
4) How precise is this measure? (the modelled error o f measurement s„)

Now we ask

5) How well do responses to item i fit the expectations of the measurement 
model? (the item’s fit tj)

6) How well do the responses of person n fit the expectations of the model? (the 
person’s ^ / 1„)

We ask these questions because we wish to establish and maintain the validity of our 
efforts. We want to confirm that the items we construct evoke and define the variable we 
intend. When we measure a person we want to verify that he has used our items in the way 
we mean him to. Even the most inspired and disciplined selection and administration of best 
possible items to appropriate and cooperative persons cannot guarantee the definition of a 
useful variable nor the successful measurement of a person.

We begin our efforts at quality control by attempting to verify that the items in an instrument 
are working together to define a recognizable and meaningful variable.

Have we succeeded in defining a discernible line o f increasing intensity? This is determined
by the extent to which item calibrations are sufficiently spread out to define distinct levels along 
a variable. Only if items are clearly separated can they identify a direction along which 
measures can be interpreted.

Is item placement along this line reasonable? The calibration of items places them at points 
along a possible line. In addition to being sufficiently well separated to define a direction, the
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items must also be ordered along this line in a way which follows the intentions of the persons 
who composed them.

Do the items work together to define a single variable? Responses to each item must be 
examined for their consistency with the idea of a single dimension along which persons have 
a unique order. Unless the responses to an item are in general agreement with the ordering 
of persons implied by the majority of items, the validity of the item is suspect.

A second set of questions examines the extent to which persons are separated along the 
same line and assesses the validity of individual measures.

Have we succeeded in separating persons along the line defined by the items? Our success in 
separating persons on a variable depends on the heterogeneity of the group of persons we are 
measuring. Although we sometimes work with samples which are rather homogeneous (e.g., 
graduates of a mastery learning program), most testing situations call for the separation of 
persons into distinct levels of achievement or attitude.

Do individual placements on the variable make sense? When other information is available 
about the persons tested, a check can be made on the reasonableness of the measures ob-
tained. This information may be teachers’judgements of student abilities or performances on 
other instruments intended to define a related variable.

How valid is each person’s measure? Finally, the responses of each person can be examined 
for their consistency with the idea of a single dimension along which items have a unique 
order. Unless the responses of a person are in general agreement with the ordering of items 
implied by the majority of persons, the validity of the person’s measure is suspect.
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5.2 DEFINING A VARIABLE BY SEPARATING ITEMS

Before we can measure anything, we must mark out the variable along which measures 
are to be made. When we measure achievement or attitude, we define the variable in terms 
of test or questionnaire items. These items must be sufficiently well separated in difficulty to 
identify the direction and meaning of the variable. Our success in defining a line of increasing 
intensity depends on the extent to which items are separated. To keep track of this we need 
some indices which describe the separation of items on a variable in a useful way.

Let the observed variance among item calibrations be SDi. Because each calibration dt 
contains error s„ we can improve our estimate of the item variance by adjusting for this 
calibration error.

Item Variance
Adjusted for 5Af = SDj -  M5£, (5.2.1)
Calibration Error

where MSEt, the “ mean square calibration error” , is the mean of the item calibration error 
variances
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Mean Square i
Calibration Error E <5 2 »

If the extent to which the items fail to work together to define a single variable is described 
by an overall test-to-sample fit mean square V, and if V exceeds one, then the test variance 
could be further adjusted for item inconsistency by

SAi = SDi -  V(MSE,)

However, as V exceeds one, the existence of a variable on which to estimate a variance becomes 
increasingly clouded. When we encounter a V larger than 1.0 in our work, we concentrate 
on diagnosing the disturbance and repairing our data rather than on making a second adjustment 
to SAi.

There are three ways the adjusted item standard deviation SA, can be used to describe the 
extent to which items are separated in difficulty. First, if we use a root mean square to obtain 
an average calibration error,

r° ,° l  M„e>” SE, -  (M S WCalibration Error

then we can calculate an item separation index which gives the item standard deviation in 
calibration error units

Item Separation Index G, = SA, / SE, (5.2.3)

Second, if we define statistically distinct levels of item difficulty as difficulty strata with 
centers three calibration errors apart, then this separation index G, can be translated into the 
number of item strata defined by the test

Number of Item Strata //, = (4G, + l)/3 (5.2.4)

Finally, we can use the proportion of observed item variance which is not due to estimation 
error as the reliability with which this sample separates these items

Sample Reliability _  SA? _  MSE, _  ,
of Item Separation R ' ~  SDi ~ SDi Gi/<1 + G» (5 2 5)

Table 5.2 shows these calculations for the twenty-five liking-for-science items from Chapter 
2. The adjusted test standard deviation SAi is 5.8 times greater than the root mean square 
calibration error SEt. This indicates a rather good separation of the twenty-five science ac-
tivities along the variable which they define. From 7/, we see that this questionnaire defines
8.0 statistically distinct attitude strata. Finally, the reliability with which this sample separates 
these items is .97.
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5.3 DEVELOPING CONSTRUCT VALIDITY

If the items in a test or questionnaire are sufficiently well separated to define several 
statistically distinct levels, and hence a direction, we are ready to examine their ordering to 
see whether it makes sense. The pattern of item calibrations provides a description of the 
reach and hierarchy of the variable. This pattern can be compared with the intentions of the 
item writers to see if it confirms their expectations concerning the variable they wanted to 
construct. To the extent that it does, it affirms the construct validity of the variable.

Items which are calibrated at much higher or lower positions on a variable than the item 
writers intended require investigation. Achievement items which are easier than intended, for 
example, often contain short-cut solutions not noticed at the time they were written. An item 
may become harder than expected because of miskeying or the presence of more than one right 
answer. In an attitude questionnaire, items which are harder to endorse than the constructors 
intended are usually unintentionally ambiguous. Items which are easier to endorse than ex-
pected are often cliches.

In Chapter 2 we asked nine adult judges to order the twenty-five science activities from 
easiest-to-like to hardest-to-like. Let us compare the nine judges expectations with the or-
dering of the science activities obtained from the seventy-five children. The UCON item scale 
value estimates are plotted against the judges’ placements in Figure 5.3. Figure 5.3 shows 
that the ordering of the activities based on the responses of the children is in reasonable 
agreement with the ordering based on the median placements of the judges. The items upon 
which there was poorest agreement between children and judges are furthest from the diago-
nal. Activities 8 “ Looking in the cracks in sidewalks for small animals” , 4 “ Watching the

___________  TABLE 5.2 ___________
SEPARATING THE TWENTY-FIVE 

LIKING-FOR-SCIENCE ACTIVITIES

Observed Variance 
among Items

Mean Square 
Calibration Error

Root Mean Square 
Calibration Error

Item Variance Adjusted 
for Calibration Error

Item Standard Deviation

Item Separation Index

Number of Item Strata

Sample Reliability of 
Item Separation

SD\ = 1.82

L

MSEi = = 1.38/25 = .05
I

SEt = CMSE,)** = .23

SAf = SD i-M SE t = 1.82-.05 = 1.77

SA, = (5Af)(i = 1.33 

Gi = S A ,/S £ , = 1.33/.23 = 5.8 

//, = (4G,+ l)/3 = (4(5.8)+ l)/3 = 8.0

/?, = SA\/SDi = 1.77/1.82 = 0.97
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grass change from season to season" and 5 “ Finding old bottles and cans" were not liked by 
the children as much as the judges predicted they would be. On the other hand, Activities 2 
“ Reading books on animals", 3 “ Reading books on plants” , 24 “ Finding out what flowers live 
on” and 9 “ Learning the names of weeds” were liked more than predicted. These adult judges 
expect children to like junk and dislike learning more than these children say they do.

5.4 ANALYZING ITEM FIT

5.4.1 Identifying Surprising Responses

In Chapter 2 we inspected the 75 x 25 matrix of responses to the science questionnaire 
(Figure 2.4b) and concluded that responses to at least two of the activities (J and 23) were in 
poor agreement with responses to the others. We need fit statistics to describe the extent of

___________________  FIGURE 5.3____________________
COMPARING CHILDREN’S AND JUDGES’ ORDERING 

OF THE SCIENCE ACTIVITIES
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such inconsistencies. Each cell of the science data matrix in Figure 2.4b shows the response 
of one child to one of the twenty-five science activities. From Chapter 4 we have a UCON 
attitude measure bn for each child and a calibration dt for each statement. When these estimates 
are substituted into the Rating Scale model, estimates Pni0, P„u and Pni2 of person n's proba-
bilities of scoring 0 , 1 and 2 on item / are obtained.

The science data matrix is displayed again in Figure 5.4a. Now the matrix is divided into 
three regions. In the upper left corner of the matrix are person-item encounters for which 2 
is the most probable response (i.e., Pni2 is the largest of the three probability estimates). In 
the middle is a region in which 1 is the most probable response (i.e., Pnil is the largest of the 
three probability estimates), and in the lower right corner is a region in which 0  is the most 
probable response (i.e., Pni0 is the largest estimate).

Only the most surprising responses are shown in Figure 5.4a. In the lower right corner 
of the matrix are the responses of low-scoring children to activities which are hard to 
like. Because these activities are hard to like, we expect 0's in this region. As a result, the 
l ’s and 2’s we observe are surprising. In the upper left of the matrix are the responses of 
high-scoring children to activities which are easy to like. Here we expect 2’s, and so it is the 
l 's  and 0 ’s which are surprising.

Figure 5.4a provides a pictorial summary of the fit of these data to the Rating Scale 
model. Two rows of this matrix contain a number of surprising responses. These are the 
response records of Children 71 and 73. The last three columns on the right of the matrix also 
contain a large number of surprising responses. These are the group’s responses to Activities 
20 “ Watching bugs” , 23 “ Watching a rat”  and 5 “ Finding old bottles and cans” . Apart from 
these two rows and three columns, there is no pattern to the surprising responses.

Some of the responses shown in Figure 5.4a are more surprising than others. We have 
circled two of the most improbable responses for closer examination. Child 71 made a score 
of 33 on the questionnaire and so obtained an attitude estimate of 0.83 logits. But this child 
gave a 0 (Dislike) to Activity 19 “ Going to the zoo”, which is calibrated at -2 .35  logits.

Child 71 is estimated to be b„ -d j = 0 .8 3 -(-2 .3 5 ) = +3.18 logits above Activity 19 on 
the liking for science variable. We can use the category probability curves in Figure 5.4b to 
read off this child’s estimated probabilities of scoring 0, 1 and 2 on Activity 19. At the point 
bn- d i  = +3.18 in this figure, these probabilities are Pnio = .00, P„n = .08 and Pni2 = .92. In 
other words, given our estimate of Child 71' s position on this attitude variable and the estimated 
position of Activity 19, this child is expected to give a 2 (Like) to Activity 19 with probability 
.92. Thus in the frame of reference provided by the way most of these twenty-five items were 
used by most of these seventy-five children, Child 71' s “ Dislike” response is very surprising!

The other circled response was made by Child 12 who scored 17 on the questionnaire and 
has an attitude estimate of — .89 logits. This child gave a 2 (Like) to Activity 5 “ Finding old 
bottles and cans” . Activity 5 is calibrated at 2.28 logits. Child 12 is —.89 — 2.28= —3.17 
logits below Activity 5 on the attitude variable. From Figure 5.4a Child 12 has an estimated 
probability of .92 of “ Disliking” , .08 of responding “ Not sure/don’t care” and .00 of “ Liking” 
Activity 5. Thus Child 12' s “ Like” response to Activity 5 is also very surprising.

Finally, in contrast, consider the response of Child 67 with a score of 29 to Activity 3 
“ Reading books on plants” . Child 67 and Activity 3 are estimated to be at the same position
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________________  FIGURE 5.4b_________________
RESPONSE CATEGORY PROBABILITY CURVES 
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on the attitude to science variable (0.39 logits). The difference h „ -d , = .3 9 -  .39 = .00, and 
so, Child 6 T s probabilities of scoring 0, 1 and 2 on Activity 3 are located at the origin in Figure 
5.4b. Child 67 has a probability of .24 of responding “ Dislike” , .52 of responding “ Not sure/ 
don’t care”  and .24 of responding “ Like” to Activity 3. Child 6Ts  observed response to this 
activity was “ Not sure/don’t care” . This is in accord with the model’s expectations for this 
child. Because it is not surprising, this response has not been shown in Figure 5.4a.

The Rating Scale model provides an expected value of the response xni for each person- 
item encounter in the science data matrix. This expected value falls between 0 and m = 2, and 
is given by

Expected value ^  . /« a
f t f ,  Em = 2 k T T nik (5-4.1)
®I*iu k = 0

where t t „h  is person n’s modelled probability of responding in category k to item i. The 
expected values for the three person-item encounters considered above are estimated as

E 7I . I 9 = 0(.00) + 1(08) + 2(.92) = 1.92

E 67 .3

<NOII + 1(.52) + 2(.24) = 1.00

E12.S II O VO N> + 1(.08) + 2(.00) = 0.08

When the expected value is subtracted from the observed response xni, a score residual
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is obtained.

Score Residual yni yni = xni -  Eni (5.4.2)

The score residuals for the three encounters are

y 7 l l 9  =  0 - 1 . 9 2  =  -1 .92

y 6 7 S  =  1 - 1 . 0 0  =  . 00

y l2 5  =  2 -  0.08 =  +1.92

The large negative score residual for Child 71 indicates his surprisingly low response to Item 
19. The score residual of zero for Child 67 indicates his expected response to Item 3, and the 
large positive score residual for Child 12 indicates his surprisingly high response to Item 
5. Score residuals can be calculated in this way for every cell of the science data 
matrix. When data fit the Rating Scale model each score residual has an expected value of 
zero.

To evaluate the score residual yni and its square yii we compute the variance of xni

m
Variance of xni Wni = 'Z ( k - E ni?  iTm* (5.4.3)

k = 0

and its kurtosis
0

m
Kurtosis of xni C„, = 'Z ( .k -E niy  Ttnik (5.4.4)

*=o

For the three person-item encounters considered earlier

W7II9 = (0—1.92)*(.00) + (1 -1 .92^.08) + (2 -1 .92^.92)

= .00 + .07 + .00 = .07
W673 = (0— 1.00)2(.24) + (1 -  1.00)2(.52) + (2 -  1.00)2(.24)

= .24 + .00 + .24 = .48
w i2.s = (0-0.08)2(.92) + (1 -0.08)2(.08) + (2-0.08)2(.00)

= .00 + .07 + .00 = .07

The variance Wni is largest when the person and item estimates are identical and decreases as
person n and item i become further apart.

As Wni is also the variance of score residual yni, this score residual can be standardized
by
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Standardized ,„WA „  . ,
Residual zni Zni ~ yni ni (5'4‘5)

For the three responses considered earlier

Z 71.19 =  - 1.92/(.07)<* = -7.11
z67,3 =  0.00/(.48),/5 = 0.00
z , 2 .5 = + 1.92/(.07)w = +7.11

The score residuals associated with two of these responses are seven standard deviations away 
from their expected value of zero. When a standardized residual is calculated for every 
response in the science data matrix, it is seen that these two responses are the most surprising 
in the matrix. The responses shown in Figure 5.4a are responses with standardized residuals 
above + 2 or below -  2 .

5.4.2 Accumulating Item Residuals

Figure 5.4a shows that Child 71' s score of 0 on Activity 19 is one of only three responses 
to this item which result in a standardized residual outside plus and minus two. Child 12' s 
surprising response to Activity 5, on the other hand, is one of fourteen surprising responses 
to that activity. The fact that so many of these seventy-five children made unexpected re-
sponses to Activity 5 suggests that this activity may not define the same attitude-to-science 
variable as the majority of these activities do.

One approach to summarizing the fit of an item to a measurement model is to square each 
of the standardized residuals for that item and average these squared residuals over the N  
persons

<5'< «

A disadvantage of statistic m, is that it is rather sensitive to unexpected responses made 
by persons for whom item i is far too easy or far too difficult. When «,• is used, we may be 
led to reject an item as misfitting because of just two or three surprising responses made by 
persons for whom the item was quite inappropriate.

An alternative is to weigh the squared residuals so that responses made by persons for 
whom the item is remote have less influence on the magnitude of the item fit statistic. A 
weighted mean square can be calculated as

Weighted _  z?,W/, + zhW2j . . . + zki-W'w
Mean Square V' Wti + W2i . . . + WNi

= 2  ziiWni / 2  Wn/ (5.4.7)
n = I  n = I

;v n

= 2  yii I 2n = I n = I
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y  ni X ni - E ni 0 W  rr rti

Standardized Residual 
Z n i = y J W % 0 l

Score Residual Squared 
y i i - W n i d i w „ , C m - W i i
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In this statistic each squared residual z 2n i is weighed by its variance Wni. Since this variance 
is smallest for persons furthest from item i, the contribution to v< of their responses is re-
duced. When data fit the model, the statistic v,- has an approximately mean square distribution 
with expectation one and variance

Variance of Weighted , ^  "
Mean Square -  l l C i - V f o  I & W J  (5.4.8)

5.4.3 Standardizing Mean Squares

To compare values of v,- for different items it is convenient to standardize these mean 
squares to the statistic

Item Fit t ti = (vj»-l)(3/qf) + (qfi)

which, when data fit the model, has a mean near zero and a standard deviation near one. These 
fit statistics are summarized in Table 5.4a.

5.4.4 Estimating Modelled Expectations

These statistics provide a useful approach to analyzing the suitability of data for con-
structing variables and making measures. Their simple form, however, depends on knowing 
TT„ik. In practice, we do not know t t and must use an estimate /*„,•* based on estimates of the 
person and item parameters. These estimates usually come from the same data from which 
the residuals are calculated. This introduces variations in the expectations and variances of 
the residuals which become conspicuous when the number of items L  or persons N  are small. 
For example, the degrees of freedom consumed by the estimation of person abilities and item 
difficulties reduce the expected value of the mean square by the factor [ { L -  1 ) ( N — 1 ) / N L ] .

The departures from expectations and variances based on tt,,,-* abate as L  and N  in-
crease. But the rate of abatement depends also on the test spread of item calibrations, the 
sample spread of person measures and the targeting of test on sample. We have not mastered 
the statistical details of these effects well enough to provide useful corrections for reducing 
them. But we have not found this an impediment to practice. The purpose of a model is to 
help us make sense of data. It is the substantive concomitants of large residuals, rather than 
the form of their modelled distribution, which are decisive in practice. In the situations we 
have studied, fit statistics based on 1T„(* but using P„ik instead have proven entirely satisfactory.

5.4.5 Examining Item Misfit

A weighted mean square v, has been calculated for each of the twenty-five science activ-
ities. These mean squares, their expected value and standard errors are shown in Table 
5.4b. Each mean square has been standardized to /„ and the activities have been sorted by 
the values of this standardized fit statistic.
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Two activities in Table 5.4b have fit-t values of +5.23 and +5.90. These are 5 “ Finding 
old bottles and cans” and 23 “ Watching a rat” . In our examination of the science data matrix 
in Chapter 2 we saw that responses to these two activities were inconsistent with other re-
sponses. We also saw that judges had difficulty agreeing on where these two activities belonged 
on the liking for science variable. In Chapter 4 we saw that the PROX and PAIR calibration 
procedures produced substantially different scale value estimates for these two activities. The 
fit statistics for Activities 5 and 23 in Table 5.4b confirm our earlier suspicions that responses 
to these two activities do not fit with those to the other twenty-three activities.

There is a school of thought which would interpret this situation to signify the need for a 
less demanding measurement model—one which might find a way to embrace Items 5 and 
23. That is not our approach. The models we work with specify what, we mean by mea-
surement. When items do not fit, that signifies to us not the occasion for a looser model, but 
the need for better items. We are looking for a core of data which can be tried as a basis for 
measurement because it follows our measurement specifications by conforming to our mea-
surement model.

In Figure 5.4c the fit-t values from Table 5.4b are plotted against the scale value estimates 
for the twenty-five activities. Most activities have fit-t values between —2 and +2. The 
three activities with the largest positive fit statistics, 20, 5 and 23, are also the “ hardest-to- 
like”  activities with the highest scale values. The activities “ Watching bugs” , “ Finding old

TABLE 5.4b
llfc ,M  F IT  5 1  AT 1ST IL-o F U K  T H E

SCIENCE ACTIVITIES

SCALE MEAN SQUARE FIT
ACTIVITY VALUE ERROR OBSVD EXPECTED FIT
NUMBER d. Si VALUE ERROR ti

1 - .3 7 .20 .51 1.00 .15 -3.93
3 .39 .18 .55 1.00 .14 -3.80

17 .15 .19 .63 1.00 .14 -2.98
11 - .8 9 .22 .58 1.00 .17 -2.88
15 - .4 5 .20 .73 1.00 .15 -1.90
25 .50 .18 .77 1.00 .14 -1.75
6 .29 .19 .77 1.00 .14 -1.73

12 -1.93 .30 .62 1.00 .25 -1.70
14 .39 .18 .79 1.00 .14 -1.58
22 .08 .19 .79 1.00 .14 -1.55
10 -1 .40 .25 .72 1.00 .20 -1.52
21 - .8 0 .22 .79 1.00 .17 -1.34
24 - .2 9 .20 .85 1.00 .15 - .9 8
4 1.64 .20 .86 1.00 .15 - .8 9
2 - .6 6 .21 .87 1.00 .16 -.81

16 .56 .18 .92 1.00 .14 - .5 6
7 1.04 .18 .95 1.00 .14 -.3 4

19 -2.35 .35 .96 1.00 .29 -.0 4
8 1.57 .19 1.05 1.00 .15 .41

13 -1.21 .24 1.12 1.00 .19 .70
18 -3 .00 .46 1.31 1.00 .40 .84
9 .66 .18 1.14 1.00 .14 .98

20 1.72 .20 1.28 1.00 .15 1.71
5 2.28 .22 2.20 1.00 .17 5.23

23 2.05 .21 2.31 1.00 .16 5.90
Mean 0.00 .22 .96 .17 -.58
S.D. 1.35 .06 .44 .06 2.33
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bottles and cans” and “ Watching a rat” were intended to demand high levels of liking for 
science. They appear, however, to introduce differences among children extraneous to the 
main line laid out by the other activities. While most children find these activities hard to 
like, there are several low scoring children who like them.

The poor fit of Activities 20, 5 and 23 may stem from the stereotype that bugs, rats and 
cans are unwholesome and to be disposed of. Perhaps a child’s attitude towards these activities 
depends on the neighborhood in which he lives. Whatever the explanation, the fact that several 
low-scoring children responded “ like” to these three usually disliked activities confounds our 
efforts to position all twenty-five activities along a single liking-for-science variable.

Two activities in Figure 5.4c have relatively large negative fit-t values. These are Activ-
ities 1 “ Watching birds” and 3 “ Reading books on plants” . In Chapter 2 we noted that 
responses to Activity 3 were particularly orderly. High scoring children liked this activity.

FIGURE 5.4c
ITEM FIT vs ITEM SCALE VALUE
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Low scoring children disliked it. While an orderly pattern of responses is usually considered 
desirable, when responses to an item are unusually orderly, this inevitably introduces a question 
as to that item’s location among the other items and so clouds the definition of the attitude 
variable. To illustrate the ambiguity that can be produced by an excessively orderly pattern 
of responses we have rescored the twenty-five science activities, first using only children who 
scored above 35 on the questionnaire and then using only children who scored below 28. The 
results of these rescorings are displayed in Figure 5.4d, where the activities are shown in the 
rank order of their scores.

At the top of Figure 5.4d the twenty-five activities are ordered from easiest-to-like at the 
left to hardest-to-like at the right according to the responses of the twenty-four children who 
scored above 35. At the bottom of Figure 5.4d the twenty-five activities are ordered by the 
responses of the twenty-six children who scored below 28.

Activity 23 “ Watching a rat” (/ = 5.90) moves from one of the hardest to like activities at 
the top of Figure 5.4d to one of the easier to like at the bottom. This documents our observation 
that several low-scoring children liked this otherwise hard-to-like activity. Where we position 
Activity 23 among the other activities depends upon the attitude level of the calibrating sam-
ple. When we include Activity 23 in our definition of this liking-for-science variable, we find 
that the variable is defined differently by children of high and low attitudes.

But now we see that the same problem arises with Activity 3 “ Reading books on plants” 
(f= -3.80). Activity 3 moves from one of the easier to like activities at the top, to one of 
the harder to like at the bottom. Where we position Activity 3 among the other activities
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also depends upon the attitude level of the children in the calibrating sample. Activity 3 also 
confounds our efforts to construct a single, common liking-for-science variable which maintains 
a fixed definition over different levels of liking for science.

Activities 23 “ Watching a rat” and 3 “ Reading books on plants”  were considered in Figure 
5.4d because of their extreme positive and negative fit statistics. The contrasting content of 
these two activities suggests an explanation for their contrasting response patterns. Opportunities 
for “ Watching a rat” are unlikely in a middle class suburb. “ Reading books on plants”  may 
be rare in urban ghettos. The failure of Activities 23 and 3 to perform in a way which is 
consistent with the other activities could be due to their interaction with socio-economic back-
ground.

The other activity with a large negative fit-t value is Activity 1 “ Watching birds” . The 
misfit of this activity can be traced to its surprisingly large number of “ Not sure/don’t care” 
responses. The bottom of Figure 2.4b shows that thirty-five children responded “ Not sure/ 
don’t care” to Activity 1. This is unexpectedly high for an activity with a score of 109. In 
contrast, only twenty-five children gave a 1 to Activity 15 (raw score = 111), and only twenty- 
three gave a 1 to Activity 24 (raw score = 107). A surprising number of “ Not sure/don’t care” 
responses can signify that an item is either too bland or too poorly specified. Watching which 
birds? Birds doing what?

5.5 IDENTIFYING INDIVIDUAL DIFFERENCES BY SEPARATING PERSONS

We can also ask how well a particular test separates the persons in a particular 
sample. While this will depend on the heterogeneity of the sample, the intention of most 
testing situations is to identify individual differences. In Chapters 6 and 7, for example, we 
describe questionnaires which have been constructed to measure college students’ attitudes 
towards drugs and their fear of crime. These questionnaires were constructed with the inten-
tion of identifying individual differences among college students.

The statistics we use to describe the separation of persons on a variable parallel the item 
separation statistics in Section 5.2. We begin with the observed variance among children 
SDj> which can be adjusted for the measurement error s„ associated with each measure b„

Sample Variance
Adjusted for SA]> = SDj> -  MSEP (5.5.1)
Measurement Error

where MSEP, the “ mean square measurement error” , is the mean of the person measurement 
error variances.

Mean Square _  £  (5 5 2)
Measurement Error „ = /

There are also three ways the adjusted sample standard deviation SAP can be used to 
describe the extent to which persons are separated on the variable. First, if we use a root 
mean square to obtain an average measurement error
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Root Mean Square _
Measurement Error

then we can calculate a person separation index which gives the sample standard deviation in 
standard error units

Person Separation Index GP = SAP / SEP (5.5.3)

Second, if we define statistically distinct levels of person ability as ability strata with 
centers three measurement errors apart, then this separation index can be translated into the 
number of statistically distinct person strata identified by the test

Number of Person Strata HP = (4G/>+l)/3 (5.5.4)

Finally, we can report the proportion of observed sample variance which is not due to 
measurement error as the reliability with which this test separates these persons.

r r c i"  * ■ m-

Table 5.5 shows these calculations for the seventy-four children for whom estimates could 
be made in Figure 2.4b. The adjusted child standard deviation SAP is 2.6 times greater than 
the root mean square error. This child separation index produces 3.8 statistically distinct child 
strata. The test reliability of child separation is .87.

5.6 DEVELOPING CONCURRENT VALIDITY

The content and construct validity of a test or questionnaire can be assessed by examining 
item fit and comparing the obtained difficulty order of the items with the order anticipated by 
their authors. It is also possible to compare the obtained person measures with an anticipated 
order to assess the concurrent validity of these measures.

One approach to establishing the concurrent validity of achievement test scores is to ask 
teachers to review the test scores made by children in their classes. This will often be the 
best way to identify high ability children whose test scores are lower than expected because 
of illness or test anxiety and low ability children whose test scores are higher than expected 
because of guessing or cheating. A second approach is to compare each person’s estimate 
with one or more independent measures of the same person on a similar variable.

A third approach to concurrent validity is to analyze the internal consistency of each 
person’s pattern of responses. One way this can be done is to partition the items on a test 
into relevant subsets and then to compare the abilities estimated from performances on these 
subsets. Table 5.6 summarizes the performances of a candidate on six booklets of a profes-
sional certification examination. The booklets represent more or less parallel forms. Ordinarily, 
candidates’ scores on the booklets are summed and certification is based on total scores. Five 
of this candidate’s six ability estimates are similar (near .45 logits). But his low score of 29 
on the first test booklet gives him an ability estimate of only -  1.54 logits. This is inconsistent
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TABLE 5.5
SEPARATING THE SEVENTY-FOUR CHILDREN 

WITH THE SCIENCE QUESTIONNAIRE

Observed Variance 
among Children

Mean Square 
Measurement Error

Root Mean Square 
Measurement Error

Child Variance Adjusted for 
Measurement Error

Child Standard Deviation

Child Separation Index

Number of Child Strata

Test Reliability of 
Child Separation

SDj. = 1.14

N

MSEP = %s& i N  = 10.92/74 = .15
n

SEP = (MSEP)l/! = .38

SA]> = SDj>-MSEp = 1.14- .15 = .99

SAP = (SAtf*  =  100 

GP = SA pI SEP = 1.00/.38 = 2.6 

HP = (4Gp+ l)/3 = 11.37/3 = 3.8

RP = S A l l  SD i = .99/1.14 = .87

TABLE 5.6
PERFORMANCES OF ONE CANDIDATE 

ON SIX PARALLEL TESTS

TEST
BOOKLET 2

WITHIN
FIT-TSCORE ABILITY ERROR

ABILITY PLOT 
- 2 - 1 0  1

1 29 -1 .54 .23 --X- 5.8

2 96 .42 .18 --X-- .7

3 81 .45 .18 -X  - .3

4 82 .34 .19 --X-- 1.1

5 90 .59 .19 ~x~ 1.6

6 74 .49 .20 -X - .3

with his ability estimates from the other booklets. His performance on the items within the 
first test booklet is also inconsistent (within fit-t = 5.8).

The estimate of —1.54 logits from the first booklet is not supported by the estimates from 
the other five, nor is it supported by internal consistency within the first booklet. When this 
candidate’s answer sheets were inspected, his “ poor” performance on the first booklet was 
traced to a damaged answer sheet which had caused the optical scanner to misread his responses 
to this booklet. Had this candidate’s total test score been reported without comparing his
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scores on the six booklets or, worse, had his score on the first booklet been used to make a 
certification decision, he would have been unfairly treated.

5.7 ANALYZING PERSON FIT

In Section 5.4 we showed how residuals could be accumulated over persons for an item 
to obtain a statistic which summarizes the fit of that item to the model. Figure 5.4a shows the 
most surprising responses to the statements in the liking-for-science questionnaire. These 
surprising responses sometimes form columns, indicating that responses to particular items are 
inconsistent. As Figure 5.4a shows, they can also form rows indicating that the inconsistent 
responses can also be traced to particular children. Residuals can be accumulated over items 
for each child to obtain a statistic which summarizes the fit of that child to the model.

5.7.1 Accumulating Person Residuals

We begin as before by calculating the expected mean variance Wni and kurtosis C„; for 
each person-item encounter

m
Eni = Z  kTfnik

k = 0

Wni = Ttnik
k = 0 

m

Cni =  ' Z V ‘ - E niY  TTnik 
k=0

The expected mean is used to obtain a score residual

y ni Xni £/ii (5.7.4)

which when squared and accumulated over items for a child provides the weighted sum of 
squares

L  L  L

ILy2 = 2  W Jxni- E niy/W ni = t w niz2ni (5.7.5)
<«i ;=/ i=i

and the weighted mean square

v, = = £  y2nil £  Wni (5.7.6)
(=/ /- /  i- /  /=/

with expectation one and variance

L  L

<£ = 2 (C ni -  W*,) / CZ wniy  (5.7.7)
I I

(5.7.1)

(5.7.2) 

. (5.7.3)
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This weighted mean square can be standardized to

= (v'n - 1)(3/<7„) + (qJD  (5.7.8)

with expectation near zero and variance near one when the model holds.

These statistics parallel the corresponding item fit statistics exactly. The only difference 
is that now squared residuals are summed over items for a person rather than over persons for 
an item. Item fit statistics play an important role in the construction and calibration of an 
instrument. Person fit statistics are useful for assessing the validity of measures made with 
instruments which have already been established.

Table 5.7 shows the responses and fit statistics of five of the children who took the liking- 
for-science questionnaire. The table is divided into three panels. The top panel shows two 
rows for each child. The first row contains the child’s responses to the twenty-five science 
activities ordered from easiest-to-like on the left to hardest-to-like on the right. The second 
row contains truncated standardized residuals which mark his most surprising responses. These 
are calculated as

Vwm.
(5.7.9)

Standardized residuals inside ±1.0 which truncate to zero are not shown. A positive residual 
indicates a surprisingly high score on an item; a negative residual, a surprisingly low score. The 
middle panel contains each child’s score r, attitude measure b, measurement error s, weighted 
mean square v, its error q, and standardization t.

Child 8 has an orderly response pattern. He has scored 2’s on most of the items for which 
2’s are expected and 0’s on the hardest-to-like activities on the far right. The 0’s and 2’s in 
the middle of his response string where 1 ’s are expected are only mildly surprising. His overall 
response pattern is in good accord with the expectations of the Rating Scale model, and this 
is reflected in his fit t of .19. Child 71, on the other hand, with the same total score as Child 
8, has a response pattern which is not in accord with the difficulty ordering of these state-
ments. His scores of 0 and 1 on the far left and 2 on the far right result in large standardized 
residuals which, when accumulated, result in a fit t of 5.40.

Children 21, 62 and 73 all made scores of 28. The ways in which they made this score, 
however, are rather different. Child 21 has an unusually regular pattern of responses—more 
regular than the Rating Scale model expects for these children responding to these state-
ments. The standardized residuals for this child are all very close to zero, producing the 
surprisingly low mean square of .29, and fit t of — 3.94. Child 62's pattern is surprising because 
of the absence of l ’s in the region where l ’s are most probable. In this middle region, Child 
62’s 0’s are unexpectedly low, and his 2’s are unexpectedly high. When accumulated, they 
result in a fit t of 1.87. Finally, Child 73' s erratic responses, particularly his disliking for very 
easy-to-like activities, produces a fit t of 5.08.
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TABLE 5.7
RESPONSE RECORDS AND FIT STATISTICS 

FOR FIVE CHILDREN

CHILD
NUMBER

RESPONSES TO TWENTY-FIVE ACTIVITIES

71

21

62

73

CHILD
NUMBER

8
71
21
62
73

EASY-TO-LIKE HARD-TO-LIKE

33
33
28
28
28

.83

.83

.28

.28

.28

.34

.34

.33

.33

.33

1.03
3.16

.29
1.52
2.87

.3

.3

.3

.3

.3

.19
5.40

-3.94
1.87
5.08

CHILD
NUMBER

8
71
21
62
73

MIN

29
21

26
22
17

SCORE
MAX

36
44
30
34
39

DIFF

9
23
4

12
22

MIN

.39
-.4 5

.07
-.35
-.8 9

MEASURE
MAX

1.19
2.47

.50

.95
1.60

DIFF

.80
2.92

.43
1.30
2.49

Returning to Child 71, whose score of 33 puts him near the group mean, we note his 
surprisingly low scores on some activities and surprisingly high scores on others. This leaves 
us puzzled about Child 71's liking-for-science. We can calculate the higher score Child 71 
would have made had his surprisingly low responses been, instead, the more positive responses 
expected of a child with a score of 33. We obtain this maximum possible score by changing 
Child 71's 0’s and l ’s on the left of his response pattern to their most probable value 2 and the 
0’s in the middle of his pattern to l ’s. This gives him a maximum score of 33 +11 = 44. Similarly, 
we can calculate the lower score Child 71 would have made had his surprisingly high responses 
been, instead, the less positive responses expected of a child with a score of 33. We obtain 
this minimum possible score by changing Child 71's l ’s and 2’s on the right of his response 
pattern to their most probable value 0 and the 2’s in the middle of his pattern to I’s. This 
gives him a minimum possible score of 33 -  12 = 21. The score boundaries 21 and 44 embrace 
a segment of this attitude variable within which we cannot help but be uncertain concerning 
the standing of Child 71. We call this segment the “ fit box” for Child 71 and we have calculated 
comparable maximum and minimum possible scores for the other four children in Table 5.7.

Figure 5.7 shows the results of these calculations. On the left of Figure 5.7 the liking-for- 
science variable is displayed vertically, running from less liking-for-science at the bottom to
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more liking-for-science at the top. The attitude estimates for the group of seventy-four children 
are also shown on the left. Children 8 and 71 scored 33 on the science questionnaire and have 
the modelled attitude estimate .83 logits with standard error .34. Children 21,62 and 73 scored 
28 and have the modelled estimate .28 logits with standard error .33. The twenty-five science 
activities on the right of Figure 5.7 are ordered from easiest-to-Iike at the bottom to hardest- 
to-like at the top. The fit boxes for these five children appear in the middle of Figure 5.7.

Child 77’s minimum possible score of 21 ( — .45 logits) and maximum possible score of 44 
(2.47 logits) mark the bottom and top of his fit box. His minimum possible score places him 
at the ninth percentile among the lowest scoring children. If we took this as Child 77’s “ true” 
liking-for-science, then we would conclude that he likes only very easy-to-like activities such 
as going on a picnic, to a museum and to the zoo. However, we see in Table 5.7 that Child 
77 does not even like going to the zoo.

Child 77’s maximum possible score places him at the ninety-second percentile among the 
highest scoring children. If we took this as Child 77’s “ true” liking-for-science, then we would 
conclude that he likes even difficult-to-like activities such as talking with friends about plants, 
watching the same animal move many days and looking in cracks in sidewalks for small ani-
mals. In fact, we see that Child 77 claims to like even more difficult to like activities such as 
watching bugs and rats and finding old bottles and cans.

Child 77’s poor fit leads to very different minimum and maximum possible scores and so 
leaves us confused about his liking for science. Child 8, who has the same score as Child 77, 
however, has many fewer surprising responses and so has minimum and maximum scores much 
closer to his obtained score. The smaller size of his fit box indicates our greater certainty 
concerning the types of activities Child 8 likes.

Fit boxes for Children 27 , 62 and 73 are also shown in Figure 5.7. Child 73' s poor fit 
results in very different minimum and maximum scores. His large fit box emphasizes the 
extent of our confusion over his liking for science. The very narrow fit box of Child 27 results 
from his surprisingly orderly pattern of responses. Notice, however, that his surprisingly low 
fit statistic of -  3.94 brings to our attention how noncommittal he has been concerning his liking 
for science. Sixteen of his twenty-five responses are “ Not sure/Don’t care” responses. When 
we compare Child 27’s responses to the ten easiest-to-like activities with those of Child 62 
whose performance is more typical of this group of children, we find Child 27 scoring lower 
than Child 62,16 to 20 and so seeming to like science less. But when we compare the responses 
of these two children to the six hardest-to-like activities, we find Child 27 scoring higher than 
Child 62, 3 to 0 and so seeming to like science morel This contradiction is the consequence 
of Child 62’s excessive number of noncommittal responses, the condition signalled by his fit 
t of -3 .94 .

5.8 “RELIABILITY” AND “VALIDITY”

Two concepts which have a long history in traditional test theory are “ reliability and 
“ validity” . While these concepts have not played leading parts in our methods for verifying 
variables and supervising the quality of measures, it is easy to see how they are included in 
our approach.
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5.8.1 Test “Reliability”

The traditional formulation of test “ reliability” can be derived from a “ true score”  model 
which assumes that the observed test score of each person can be resolved into two components: 
an unknowable true score and a random error. Test reliability is defined as the proportion of 
a sample’s observed score variance SD2 which is due to the sample’s true score variance 
ST2

R  = SPISD 2 = 1 -(S& ISD 2)

where the observed variance is partitioned into two components SD2 = ST2 + SE2, and SE2 
is the error variance of the test, averaged over that sample.

The magnitude of the traditional reliability coefficient depends not only on the average test 
error variance SE? which is intended to describe how precisely the test measures (i.e., for a 
given ST2, the greater the precision of measurement, the smaller SE2 and the larger/?), but also 
on the sample true score variance ST2 which is intended to describe the “ true” ability dispersion 
of the “ true”  sample (i.e., for a given SE2, the greater the sample true score variance ST2, the 
larger R).

The observed sample variance SD2 can be calculated directly from the observed measures, 
but the test error variance SE2 must be derived from a model describing how each score 
occurs. The traditional approach to estimating this error variance is to estimate the reliability 
first. This is done in various ways, for example, by calculating the correlation between re-
peated measurements under similar conditions or by correlating split halves or by combining 
item point biserials. An average error variance for the test with this particular sample is then 
estimated as 5/^(1 —/?') where R ' is the estimate of R.

In practice, the magnitude of this estimated reliability R ' also depends upon a third factor, 
namely the extent to which the items in the test actually work together to define one varia-
ble. The traditional estimates of R  can be thought of as a function of an observed sample 
variance SD2 and a “ working” test error variance SW2:

R ' = 1 -  (SW /SD 2)

The working error variance has two parts. The modelled test error variance SE2 is its 
theoretical basis. But it is also influenced by the extent to which the items actually fit together 
in the way they are used by the sample in hand and so are internally consistent. When item 
inconsistency is estimated by an overall fit mean square V for the test and sample together and 
V > 1, then the working error variance can be estimated by

SW2 = V(SE?) 

so that the estimated reliability becomes

R ' = 1 -  [ViSEPVSD2]

Our method deals separately with the three components V, SE  and ST  which are submerged 
in the traditional test reliability coefficient. We provide a direct estimate of the modelled test 
error variance SE2. This modelled error tells us how precisely we will be able to estimate
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each person's ability when the items are internally consistent. Unlike the traditional reliability 
coefficient, SE  is not influenced by sample variance or fit and so is not sample specific. It is 
a sample-free test characteristic of the set of items which make up the test. It estimates how 
precisely the ability of any person whose response pattern fits can be estimated from their 
particular score on this test, regardless of any sample to which he may belong.

Unlike the traditional reliability coefficient and the measurement error it implies, this 
estimate is not an average for the whole test, but is particular to the test score the person 
actually obtains. This is important because there can be substantial differences in estimation 
error between extreme and central scores. If the range of scores is r= \,M  where M =mL, 
m+  1 is the number of response alternatives and L is the number of items, then approximate 
boundary values for SEr~[M/r(M -  r)]l/! in logits are

SE, = SEm - i < 1 + 1/2A/
and

SEm/2 > 2/M14

Thus the precision of measures based on central scores can be M'A/2 greater than the precision 
of estimates based on extreme scores.

5.8.2 Test “Validity”

In traditional test theory a distinction is made between internal and external validity. The 
usual statistics employed to assess the internal validity of a test are the item point biserials and 
their accumulation into the test reliability estimate. Since the magnitude of this item statistic 
depends on the distribution of the sample and in particular on the relationship between the item 
p-value and the sample spread, it has the disadvantage of being dependent on sample char-
acteristics which need not pertain to validity. When an explicit measurement model is used, 
the internal validity of a test can be analyzed in terms of the statistical fit of each item to the 
model in a way that is independent of the sample distribution. To facilitate our item fit analyses, 
we standardize these mean squares into fit statistics with expected means near zero and expected 
standard deviations near one. We use the term “ valid” to refer to the success of this evaluation 
of fit. If the fit statistics of an item are acceptable, i.e., near zero, then we say the item 
calibration is “ valid” . We also supervise the internal consistency of each person’s pattern of 
performance in the same way and, if the fit statistics for a person’s performance are acceptable, 
say that their measure is “ valid” .

5.9 MAINTAINING VARIABLES BY COMPARING ESTIMATES

When a variable is used with different groups of persons or to measure the same persons 
on different occasions, it is essential that the identity of the variable be maintained from one 
occasion to the next. Only if the item calibrations are invariant from group to group and from 
time to time can meaningful comparisons of person measures be made. To evaluate the in-
variance of item calibrations we compare centered estimates for the same set of items on 
different occasions. The simplest case is two occasions.

On the first occasion we obtain a calibration d, and error s, for each item i (or item step 
if). On the second occasion we obtain a second calibration ^  and error S2 for each item. Each
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of these sets is centered on zero so that their comparison is independent of incidental translation 
effects. They can be compared by

1) plotting d, against d2 and evaluating this plot in the context of s, and s2,
2) computing standardized differences z = (d, -  d2)/(sj + s$)l/! and reviewing their distri-

bution, especially as a function of d. = (d/ + d2)l2, and
3) correlating dt and d2 over all L  items.

5.9.1 Plotting Estimates from Different Occasions

The first approach to comparing item estimates from different calibrating samples, and the 
one we prefer, is to plot the two sets of estimates against each other. The resulting plot is 
then examined in the light of expectation, that is, in the light of a confidence band based on 
the errors of calibration. Figure 5.9 shows how such a confidence band can be constructed. The 
two estimates d/ and d2 for each item define the point (dt ,d2) which is marked with an X. The 
difference (dt - d 2) has an estimated standard error s /2 = (sj + sj)'/>. A confidence band cor-
responding to k standard errors of this difference can be formed by marking off k l\/2  error 
units perpendicular to the identity line on each side of the point (d.,d .). These boundary points 
C and C  are (d. — ksl2l2, d. + k s j l )  and (d. + k s j 2, d . - k s j 2).

The amount of confidence is specified by the choice of k. When k = 2, for example, about 
95 percent of the (dt , d2) pairs are expected to fall inside the confidence band. If substantially 
more than 5 percent of them fall outside, that is evidence for a general lack of invariance in 
the item calibrations. Even when only a few items fall outside the confidence band, we examine 
those few carefully to see what we can learn from their variation.

5.9.2 Analyzing Standardized Differences

The standardized difference between different estimates of the same parameter

z = (d, -  d2)t(s] +

has an expectation of zero and a variance of one. Trends in these standardized differences 
can be studied by plotting z against d.

5.9.3 Analyzing Correlations Between Estimates

The maximum value we can expect the correlation between d/ and d2 to reach is determined 
by their standard errors s / and s2 and the variance of their mean. This maximum correlation 
is

Rmax = 1 - S E * /S D *

where
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_____________ FIGURE 5.9 _____________
COMPARING TWO SETS OF ESTIMATES

L  L

and, if d/ and d2 have been centered at 2 ^/ = 2 ^ 2  = 0 >

L

SD2 = 2W / + <*2)2 /4 ( L - l )

so that

Rmax = 1 - [a  - D/Z-J [2(*i+*3)/ 2 (d,+d2f \

We can use R. A. Fisher’s log transformation for linearizing correlations to compare the 
observed correlation r/2 between dj and d2 over the L  items in the set with R max. The fit
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statistic

t = ( L -  3)»
log

( \+ r l2) ( \ - R max)
L ( l - r /2) ( l + / ? ma, )J

has expectation zero and variance one when invariance holds.

This concludes our presentation of method. Chapters 3, 4 and 5 contain the main 
ideas. But a method cannot be adequately grasped in the abstract. It must be realized in 
specific applications worked out in enough detail to bring out how the method works in 
practice. This is the aim of the next four chapters.

In Chapter 6 we use the Rating Scale model to analyze college students attitudes toward 
drugs. This questionnaire contains a mixture of statements fo r  and against drugs. We com-
pare students' responses to these two types of statements about drugs and discuss some con-
sequences of including both positively and negatively worded statements in an attitude 
questionnaire. We also show how the Rating Scale model can be used to expose differences 
in individual response styles.

In Chapter 7 we analyze a second attitude questionnaire constructed to measure college 
students’ fear of crime. Like the attitude-to-drugs scale, this questionnaire provides a fixed 
set of response alternatives for use with all nine items. We analyze these data first with the 
Rating Scale model and then with the Partial Credit model. This gives us an opportunity to 
compare the similarities and differences between these two approaches.

In Chapter 8 we analyze performances on a school physics test. These performances are 
scored using an “ answer-until-correct”  format. We begin our analysis with two separate 
applications of the Dichotomous model, and then show how the same results can be obtained 
with a single application of the Partial Credit model.

In Chapter 9 we use the Partial Credit model to study performances of infants on a pre-
kindergarten screening test and show how the ability variable defined by this test can be 
understood in terms of the subtasks making up each item.



6 ATTITUDE TOWARDS DRUGS

In this chapter we apply our measurement method to measure the attitudes of seventy-five 
college students towards the use of drugs. These data were collected by Leona Aiken of the 
Institute for Survey Research, Temple University, Philadelphia. The attitude questionnaire 
contains twenty statements drawn from the Pennsylvania State University Evaluation Scales 
(Swisher and Horan, 1973, 87-94). Ten of these are statements which persons in favor of drug 
use might be expected to make (Figure 6.0a). The other ten are statements which persons 
opposed to drug use might be expected to make (Figure 6.0b).

Students were asked to record their agreement or disagreement with each statement in 
terms of five ordered alternatives. A typical item is

7. I would welcome the opportunity to get high on drugs.
a. Strongly Agree d. Disagree
b. Agree e. Strongly Disagree
c. Have No Opinion

We will not analyze the responses to all twenty statements simultaneously. Instead, we 
will consider the ten positively worded For statements and the ten negatively worded Against 
statements separately. Our analysis will show that this separation of For and Against state-
ments is a necessary step in the identification and definition of this variable.

  FIGURE 6.0a_______
----------------------------- STATEMENTS FOR DRUGS -----------------------------

1. I see nothing wrong with taking an LSD trip.
2. People who make drug legislation should really have personal 

experience with drugs.
3. I wish I could get hold of some pills to calm me down whenever I get 

“ up tight” .
4. All drugs should be made legal and freely available.
5. In spite of what the establishment says, the drug scene is really “ where 

it’s at”.
6. I admire people who like to get stoned.
7. I would welcome the opportunity to get high on drugs.
8. If people use drugs together, their relationships will be improved.
9. Smoking marijuana is less harmful than drinking alcohol.

10. People who use drugs are more fun to be with than those who don’t
use drugs.

118
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__________ FIGURE 6.0b__________
-------------------------- STATEMENTS AG AINST  DRUGS --------------------------

1. Drugs are basically an “ unnatural” way to enjoy life.
2. I ’d have to be pretty sick before I’d take any drug including an aspirin.
3. Pep pills are a stupid way of keeping alert when there’s important work 

to be done.
4. Students should be told about the harmful side effects of certain drugs.
5. Even if my best friend gave me some hash, I probably wouldn’t use it.
6. As a general rule of thumb, most drugs are dangerous and should be 

used only with medical authorization.
7. Taking any kind of dope is a pretty dumb idea.
8. People who regularly take drugs should not be given positions of 

responsibility for young children.
9. Experimenting with drugs is dangerous if a person has any 

psychological problems.
10. Drugs can cause people to say or do things they might later regret.

6.1 DATA FO R  DRUGS

Responses to the ten statements For drugs have been scored “ Strongly Disagree” (0), 
“ Disagree” (1), “ Have No Opinion” (2), “ Agree” (3) and “ Strongly Agree” (4). The re-
sponses of the seventy-five students to these ten statements are shown in Table 6.1. The 
entries in each row of this score matrix have been summed to obtain an attitude score for each 
student. The minimum score a person can make on these ten statements is 10x0 = 0. The 
maximum is 10 x 4 = 40. The seventy-five students have been sorted by score so that students 
with the highest scores are at the top of the table. A high score is obtained by strongly agreeing 
with most of these statements For drugs, and reflects a favorable attitude toward drug use. In 
contrast, the low scoring students at the bottom of Table 6 .1 strongly disagree with most of 
these statements, and are therefore less in favor of drug use.

The entries in the columns have also been summed to obtain a score for each statement, 
and the statements have been sorted by score. Statements with high scores are statements 
with which these students were more inclined to agree. These are on the left of 
Table 6.1. Statements with low scores are harder to agree with. They are on the right.

At the top left of Table 6 .1 are responses of students most in favor of drugs to the statements 
with which it is easiest to agree. In this corner we expect agreement (4’s and 3’s). At the 
bottom right of Table 6 .1 are responses of students least in favor of drugs to the statements 
with which it is hardest to agree. In this corner we expect disagreement (0’s and l ’s).

The person scores order the students on the basis of their agreement or disagreement with 
these ten statements. But this order has meaning only if the ten statements join together to 
define a single dimension—that is, only if these statements are consistent with one another in 
their ordering of the seventy-five students.

Responses to Statement 6 “ I admire people who like to get stoned” , are in good accord 
with the person score ordering. Students with scores above 13 tend to respond “ have no 
opinion” (2) to Statement 6; students with scores between 8 and 13 tend to respond “ disagree” 
(1), and students with scores below 8 tend to respond “ strongly disagree” (0).
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STATEMENTS FOR DRUGS 
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HARD TO 
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4
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4
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1
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0
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2 1 1 1 0 1 1 1 1 0 895 2 1 0 0 0 0 1 3 1 0 889 2 1 1 1 1 0 1 0 1 0 8
3 3 4 0 0 0 0 0 0 0 0 764 3 4 0 0 0 0 0 0 0 0 775 1 2 2 0 0 1 0 0 0 0 624 1 3 0 0 0 0 1 0 1 0 6
7 1 3 0 0 1 1 0 0 0 0 659 2 0 1 0 3 0 0 0 0 0 629 3 0 0 0 0 3 0 0 0 0 626 4 0 0 0 0 0 1 0 0 1 682 2 4 0 0 0 0 0 0 0 0 648 3 3 0 0 0 0 0 0 0 0 6

55 3 2 0 0 0 1 0 0 0 0 632 3 1 1 0 0 1 0 0 0 0 6
88 4 0 0 0 0 0 0 0 0 511 3 0 0 0 1 0 0 1 0 5

6 2 1 0 0 0 1 0 0 0 1 565 0 4 0 0 0 0 0 0 0 0 446 0 4 0 0 0 0 0 0 0 0 4
4 1 1 0 0 0 1 0 1 0 0 471 3 0 0 0 0 0 0 0 0 0 380 2 0 0 0 0 0 0 0 0 0 2

Statement
Score 203 162 93 82 72 67 64 63 63 51



T A B L E  6.2
DATA A G A I N S T  DRUGS
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H A R D  T O  
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S C O R E

P E R S O N
N U M B E R

E A S Y  T O  
A G R E E  

4  10 9

S T A T E M E N T S  A G A IN S T  D R U G S  

6  1 3  8 7
7 4 4 4 4 4 4 4 4 4 4 4080 4 4 4 4 3 4 4 4 4 4 3975 4 4 4 4 4 3 4 4 4 3 3864 4 4 4 4 4 4 3 4 4 3 3883 4 4 3 4 4 4 4 4 4 3 38

72 4 3 3 4 4 3 4 4 4 4 374 3 4 4 4 4 3 4 4 4 3 37
46 4 4 4 4 4 4 4 4 4 3659 4 3 4 4 3 4 4 4 4 2 36

3 4 4 4 4 4 4 4 4 4 0 36
65 4 4 4 4 4 4 4 4 4 36
88 4 3 4 3 4 4 3 3 4 4 36
SO 4 3 3 3 4 4 4 4 2 4 35
82 4 4 4 4 4 4 4 4 3 35
92 4 3 4 4 4 4 3 4 4 35
2 4 4 4 4 2 2 4 4 2 4 34

86 4 4 4 4 3 3 3 3 4 1 33
87 4 3 4 3 3 4 2 3 4 3 33
5 4 4 4 4 4 4 4 3 1 1 33

I I 4 3 4 3 4 4 4 3 3 1 33
96 4 3 4 4 4 2 4 3 4 1 33
10 4 4 4 3 3 4 4 3 3 32
48 4 2 4 4 4 4 3 3 1 3 32
58 4 4 4 3 3 4 4 3 1 1 31
22 4 3 3 3 3 3 3 3 3 3 31

6 4 3 2 3 4 3 2 4 3 3 31
95 4 3 3 3 4 3 2 4 4 31
79 4 4 4 4 2 3 4 4 1 31
33 4 4 4 4 4 4 2 4 0 30
24 4 0 4 4 3 4 4 4 3 30
71 4 3 4 4 4 3 3 4 0 30
69 4 3 3 3 3 3 3 3 3 1 29
85 3 3 3 3 3 3 3 3 1 4 29
81 4 4 3 3 4 4 1 3 28
90 4 3 4 4 3 4 4 1 27
54 4 3 2 3 2 3 2 3 4 27
84 4 4 2 4 3 2 4 1 3 27
55 4 4 4 4 3 1 1 4 1 27
70 3 3 3 3 3 1 1 3 3 3 26
32 4 4 3 4 2 1 0 3 4 1 26
60 4 3 4 3 1 3 3 0 4 26

1 3 3 4 3 3 1 4 2 1 2 26
94 3 3 3 3 3 3 3 3 1 26
26 0 4 4 3 3 4 3 3 1 26
27 3 2 3 3 3 3 2 3 3 1 26
45 4 3 3 3 3 1 4 1 1 24
34 4 0 4 4 3 4 0 4 23
91 4 3 2 3 3 4 2 0 1 23
S3 4 4 3 3 3 2 2 0 23
57 4 4 4 2 2 0 2 4 0 0 22
76 3 3 2 1 3 3 3 2 22
23 4 4 3 3 3 1 1 3 0 22
52 3 3 3 3 1 3 4 1 0 0 21
28 4 3 4 3 1 3 2 1 0 0 21
73 4 3 3 1 3 4 0 1 1 1 21
9 4 4 1 4 1 0 2 1 3 20

25 4 3 3 3 1 3 1 1 1 0 20
93 3 3 3 1 1 1 3 1 4 0 20
62 4 3 3 0 1 3 2 2 0 1 19
47 4 3 3 1 1 3 2 1 1 0 19
77 0 4 3 2 3 1 3 2 0 1 19
56 4 3 3 2 3 1 1 1 0 1 19

8 4 0 0 3 4 0 1 3 4 19
78 3 3 3 1 3 1 1 1 1 1 18
SI 4 4 4 3 1 1 1 0 0 18
67 3 2 2 3 3 1 1 1 1 1 18
66 3 3 2 2 3 1 2 1 0 0 17
89 3 3 2 1 3 2 2 1 0 0 17
31 0 1 4 4 4 1 3 0 0 17
49 3 3 3 3 1 1 1 1 0 0 16
63 0 3 3 1 1 1 1 1 4 1 16
68 4 3 3 1 1 1 1 1 1 0 16
61 4 1 4 1 1 2 0 1 0 0 14
74 3 3 2 1 1 3 0 0 0 0 13
29 0 0 0 4 4 0 0 0 0 1 9

Statement
Score 265 234 223 215 212 184 184 183 168 134



122 RATING SCALE ANALYSIS

Responses to Statement 2, “ People who make drug legislation should really have personal 
experience with drugs” , are less orderly. Ten students scoring 13 or more either “ disagree”
(1) or “ strongly disagree” (0 ) with this statement, while eleven students scoring 10 or less 
either “ agree” (3) or “ strongly agree” (4). In other words, this statement fails to provide 
attitude information which is consistent with the information implied by the other nine state-
ments in the questionnaire. When students are ordered on the basis of their responses to 
Statement 2, the resulting order is different from the person score order. This leads us to 
suspect that Statement 2 is not defining the same drug attitude variable as the other statements.

Statement 2 is the only statement involving “ legislation”, and the “ personal experience” 
to which it refers could be bad as well as good. The disorderliness of the responses to Statement 
2 might lead us to delete it from the questionnaire were it not the only statement near its 
particular level of difficulty. Instead we will retain Statement 2, for now, because it can help 
us to “ see” the general range of the variable defined by these ten statements. When we have 
an opportunity to improve our definition of this drug attitude variable, we can try to replace 
Statement 2 with two or three statements which are equally easy to agree with, but less 
ambiguous.

The statement scores order the ten statements from those with which it is relatively easy 
to agree to those with which it is relatively hard to agree. We can examine rows of responses 
to these statements for consistency with this difficulty ordering. Consider, for example, the 
response vector of Person 94 with a score of 16. This person has scored 3’s and 2’s on the 
statements easy to agree with, but l ’s on the statements hard to agree with. His pattern of 
responses is in good accord with the statement score ordering.

The responses of Person 90 with a score of 12, on the other hand, are in poor accord with 
the ordering of statement scores. This is because of the surprising responses this person made 
to Statements 3 and 4. Given the difficulty of agreeing with these statements, this person 
should have strongly disagreed (0) with both of them. This would have given Person 90 a 
score of 5 and placed him near the bottom of the table. In fact, he agreed (3) and strongly 
agreed (4) with these two statements, resulting in a score of 12, and leading to confusion in our 
minds as to where this person should be located among the other seventy-four persons. We 
are forced to conclude that we have not yet measured the attitude of Person 90 successfully. Since 
his pattern of responses is so chaotic, we could improve our calibration of these statements 
slightly by dropping this person from the calibration sample. If we wish to know Person 90' s 
attitude, we will have to test him again.

The attitude variable defined by these statements For drugs can be seen by examining the 
ordering of the statements by score. Statement 9, with a score of 203, is easy to agree with

9. Smoking marijuana is less harmful than drinking alcohol.

A person does not have to be much in favor of drug use to agree with this. Statement 2, with
a score of 162, is somewhat harder to agree with

2. People who make drug legislation should really have personal experience with drugs.

Still harder to agree with is Statement 8, with a score of 93

8 . If people use drugs together their relationships will be improved.



Finally, Statement 4 , with a score of 51, describes an attitude very much in favor of drugs

4. All drugs should be made legal and freely available.

The statement scores at the bottom of Table 6 .1 represent points on the drug attitude 
variable. To become fully useful,however, these scores still need to be transformed into cal-
ibrations on an interval scale and freed from the particular attitudes of the persons in the sample.
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6.2 DATA A G A IN ST  DRUGS

Responses to the ten statements Against drugs are displayed in Table 6.2. Once again, 
“ strongly agree” has been scored 4 and “ strongly disagree” 0, and persons and statements 
have been ordered by score. This scoring points the Against variable in the opposite direction 
from the For variable.

The first difference we notice between Tables 6 .1 and 6.2 is in the frequency with which 
0’s and 4’s occur. In Table 6.2 many more persons “ strongly agree” (4) with these statements 
opposing drugs, and very few “ strongly disagree” (0). Person 7 at the top of Table 6.2 strongly 
agreed with all ten statements opposing drug use to make a score of 40. He is as much against 
drugs as this Against scale can record. (If the For and Against attitude scales define the same 
variable, we expect persons at the top of Table 6.2 who are most against drugs to be least for 
drugs and so to appear at the bottom of Table 6.1. We will investigate the extent of agreement 
between the For and Against scales presently).

We can examine the columns of the data matrix in Table 6.2 to see if any statements digress 
from the common variable defined by the majority of statements. In this case, responses to 
nine of the ten statements seem in good accord with the person score order. Responses to 
Statement 7, however, may be too orderly to be consistent with the other items.

Not all rows of responses are orderly, however. While the responses of some persons, 
like Person 69 with a score of 29 and Person 78 with a score of 18, are in good agreement with 
the statement score ordering, the responses of others, like Person 34 with a score of 23, bear 
almost no relationship to the statement score order. This makes Person 34's score of dubious 
validity as an indicator of his drug attitude and his response pattern useless for statement 
calibration.

6.3 FO R  DRUGS VARIABLE

Table 6.3 lays out the For drugs variable. Our psychometric method has transformed the 
person and statement scores into measures and calibrations in logits. This logit scale is on the 
left of the table and runs from + 1.4 logits to -  2.6 logits. The distribution of persons on the 
For drugs variable appears under the heading “ Persons Tested” . Persons toward the top of 
Table 6.3 are more in favor of drug use than persons toward the bottom. One person appears 
to be considerably more in favor of drug use than the others. From Table 6 .1 we see that this 
is Person 51 who had a score of 33 on the For drugs scale.

On the right of Table 6.3 eight of the ten statements For drugs are positioned at their 
calibrations on the attitude variable. The four statements discussed earlier are circled. The
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TABLE 6.3
t ( J K  D K U U 5  V A R I A B L E
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IN LOGITS STATS PLOT 9 2 8 4
MORE FOR STRONG STATEMENTS FOR

X

+ 1

— M + 2S 97 92 74 42 (d^AII drugs should be made legal and freely available.

___ XX 10. People who use drugs are more fun to be with.
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content and construct validity of the For drugs variable can be judged from the texts and the 
ordering of these eight statements.

The middle panel of Table 6.3 provides a content interpretation of measures on this vari-
able. This interpretation is couched in terms of expected agreement (choosing either “ agree” 
or “ strongly agree” ) in response to statements like 9 ,2 ,8  and 4. Persons located at the mean 
M  of the sample distribution, for example, are expected to agree or strongly agree with state-
ments as weak as 9, 70 percent of the time. Statement 2 is somewhat stronger. Persons 
estimated to be at position M on the attitude variable are expected to agree with statements 
like 2 only 48 percent of the time. Statements 8 and 4 are stronger still, and persons at position 
M  are expected to agree with statements as strong as these only 14 and 3 percent of the time.
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Persons more in favor of drug use are more likely to agree with all four statements. Persons 
less in favor of drug use are less likely to agree. In fact, the two persons at the bottom of 
Table 6.3, who are estimated to be least in favor of drugs, can be expected to agree with 
statements like 8 and 4 less than one percent of the time.

Most of the statements favoring drug use are positioned between M + S  and M  + 2S on 
the variable. This means that most of these students found these statements difficult to en-
dorse. Our capacity to measure the attitudes of these students would be improved if we could 
compose some new statements favoring drug use with which it was easier to agree.

6.4 A G A IN ST  DRUGS VARIABLE

Results of the analysis of the ten statements against drugs are shown in Table 6.4. Person 
measures and statement calibrations are in logits and persons near the top of Table 6.4 are more 
against drugs than persons near the bottom.

Eight of the ten statements against drugs are shown on the right of this table. Statement 
4 is easiest to agree with. A person does not have to be much against drugs to agree that 
students should be told about the harmful side effects of drugs. Statement 2 “ I’d have to be 
pretty sick before I ’d take any drug, including an aspirin” , is at the other extreme. It is the 
statement hardest to agree with. A person has to be strongly against drugs before he agrees 
with this extreme statement.

The four circled statements can be used to interpret the attitude measures. A person 
located at the mean M  of the sample distribution can be expected to agree with weak statements 
like 4 about 96 percent of the time. He will be less likely to agree with stronger statements 
like 10 and 3, but can be expected to agree even with statements as strong as 2 about 34 percent 
of the time.

The person at the bottom of Table 6.4 who is least against drugs (from Table 6.2, this is 
Person 29, with a score of 9) can be expected to agree with statements like 4 about 55 percent 
of the time, but will agree with strong statements like 2  less than 2 percent of the time.

6.5 RESULTS OF THE ANALYSES

The variable maps in Tables 6.3 and 6.4 were constructed from output produced by the 
computer program we used to analyze the For and Against statements. The statistics for the 
For drugs statements are displayed in Table 6.5a. These statistics appear twice, rank ordered 
by scale value and by fit. The estimated difficulties of the statements appear under the heading 
Scale Value in each panel of the table. In the left panel, the statements are ordered so that 
those easiest to agree with are at the bottom, and those hardest to agree with are at the top.

The right panel orders the statements by fit. The statement at the top of the Fit column 
is 6 . In Table 6.1 we noted that responses to this statement were in almost perfect accord 
with the person score ordering. As we saw in Chapter 5, the consequence of this near perfect 
ordering is that the statement does not maintain its position with respect to the other nine 
statements. It is one of the easiest statements to agree with for the high scoring persons, but 
one of the hardest to agree with for the low scorers. This makes its participation in the
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________ TABLE 6.4 ________
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M -2 S 59 28 07 02
— X

^  Students should be told about the harmful
-1 side effects o f certain drugs.

LESS
A G AIN ST WEAK STATEMENTS AG AIN ST

definition of this attitude variable ambiguous. The statement at the bottom of the Fit column 
is 2. We saw in Table 6 .1 that responses to this statement were least in accord with the ordering 
of the persons by the other statements.

The statistics for the Against statements are shown in Table 6.5b. The scale values in 
this table were used to position these statements on the variable in Table 6.4. None of these 
statements has a large positive fit value. This is consistent with our earlier observation that 
none of the statements in Table 6.2 produced an unusual ordering of persons. Statement 7, 
however, at the top of the Fit column with a value of -  3.86, has responses which, as we noted,
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TABLE 6.5a
t U K  D K U U o  & 1 A L 1 S T 1 C S

SCALE VALUE ORDER
IT E M

N A M E
S C A L E
V A L U E E R R O R

F IT
t

4 0.59 0.14 0.67
5 0.37 0.13 -1 .4 5

10 0.37 0.13 -0 .9 7
6 0.36 0.13 -3 .81
J 0.31 0.13 0.19
1 0.23 0.13 1.70
7 0.09 0.12 -2 .4 3
8 -0 .0 6 0.12 -1 .0 8
2 -0 .8 7 0.11 4.83
9 -1 .3 8 0.12 0.17

Mean

S.D.
0.00
0.62

-0 .2 2

2.38

FIT ORDER
IT E M

N A M E
S C A L E
VALUE E R R O R

W E IG H T E D  
v s

F IT
t

6 0.36 0.13 0.46 0.18 -3 .81
7 0.09 0.12 0.65 0.16 -2 .4 3
S 0.37 0.13 0.75 0.18 -  1.45
8 -0 .0 6 0.12 0.84 0.15 -1 .0 8

10 0.37 0.13 0.83 0.18 -0 .9 7
9 -1 .3 8 0.12 1.02 0.16 0.17
3 0.31 0.13 1.02 0.17 0.19
4 0.59 0.14 1.12 0.20 0.67
1 0.23 0.13 1.30 0.17 1.70
2 -0 .8 7 0.11 1.87 0.15 4.83

0.00
0.62

0.99

0.40

0.17

0.02
-0 .2 2

2.38

________  TABLE 6.5b ________
AG AINST  DRUGS STATISTICS

SCALE VALUE ORDER FIT ORDER
ITEM

NAME
SCALE
VALUE ERROR

FIT
t

ITEM
NAME

SCALE
VALUE ERROR

WEIGHTED 
v s

FIT
t

2 0.69 0.10 0.85 7 0.21 0.10 0.54 0.14 -3 .8 6
5 0.36 0.10 0.21 8 0.20 0.10 0.76 0.14 -1 .81
7 0.21 0.10 -3 .8 6 1 -0 .0 9 0.10 0.84 0.15 -1 .0 6
3 0.20 0.10 0.11 10 -0 .3 5 0.11 0.83 0.18 -0 .9 5
8 0.20 0.10 -1 .8 1 6 -0 .1 2 0.11 0.90 0.15 -0 .61
1 -0 .0 9 0.10 -1 .0 6 3 0.20 0.10 1.01 0.14 0.11
6 -0 .1 2 0.11 -0 .61 5 0.36 0.10 1.02 0.14 0.21

9 -0 .2 1 0.11 0.92 2 0.69 0.10 1.13 0.15 0.85

10 -0 .3 5 0.11 -0 .9 5 9 -0 .21 0.11 1.15 0.16 0.92

4 -0 .9 2 0.16 1.94 4 -0 .9 0 0.16 1.61 0.28 1.94

Mean

S.D.

-0.00
0.42

-0 .4 3
1.64

-0.00
0.42

0.98
0.29

0.16
0.04

-0 .4 3
1.64

are in an agreement with the score ordering of the persons which may be too good to be 
useful. Statement 7 shifts its standing among the other statements from the easiest to agree 
with for the high scoring persons to one of the hardest to agree with for the low scoring 
persons. This shift spoils the participation of Statement 7 in a general definition of an attitude 
against drugs variable.

The statement scale values from the output in Tables 6.5a and 6.5b were used to position 
the For and Against statements along the attitude variable on the right of Tables 6.3 and 
6.4. The person plots on the left of Tables 6.3 and 6.4 were also constructed from computer 
output showing the distribution of attitude estimates for this sample of students. Finally, the 
expected percent agreement levels in the middle of Tables 6.3 and 6.4 were read from the 
category probability curves shown in Figures 6.5a and 6.5b.
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Figure 6.5a shows the way in which the estimated probabilities of strongly disagreeing, 
disagreeing, having no opinion, agreeing and strongly agreeing with statements on the For drugs 
scale vary with attitude. There is a different curve in this picture for each response cate-
gory. These five curves show that the probability of strongly disagreeing decreases, and the 
probability of strongly agreeing increases as attitudes become more favorable to drugs. The 
probabilities for the middle three categories increase to a maximum and then decrease.

The probability curves in Figure 6.5a are centered on the scale value d2 = -  .9 logits of For 
drugs Statement 2, and so, can be used to read off the estimated probability of any person 
selecting any one of the five responses to this statement For drugs. To see how this works 
suppose that we wanted to estimate the probability of a person with a score of 29 on the For 
drugs scale “ agreeing” with Statement 2. A person with a score of 29 has an attitude estimate 
b of -  .1 logits. To find this person’s estimated probability of “ agreeing” with Statement 2, 
we find —.1 logits on the horizontal axis and look for the height of the “ agree” curve at this 
point. As it turns out, the probability at this point is .44, the maximum of the “ agree” 
curve. Since the “ agree” curve is the highest curve at - .  1 logits, we can also see that “ agree” 
is the most likely response a person with a score of 29 will make to Statement 2.

We have used the category probability curves in Figure 6.5a to read off the estimated 
probabilities of selecting each response to Statement 2 for each of five attitude levels M +2S, 
M + S, M, M - S ,  and M —2S. These estimated probabilities are shown in Table 6.5c.

From Table 6.5c it can be seen that a person at attitude level M +2S  has a probability of 
.37 of agreeing, and a probability of .55 of strongly agreeing with Statement 2. This means 
that a person at this attitude level is expected to either agree or strongly agree with statements 
like 2 37 + 55 = 92 percent of the time. This expectation has been used to provide the content
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TABLE 6.5c
RESPONSE PROBABILITIES AT FIVE 

ATTITUDE LEVELS 
(FOR DRUGS STATEMENT 2)

ATTITUDE ESTIMATE RESPONSE CATEGORY

LEVEL SCORE LOGITS
Strongly
Disagree

Have No 
Disagree Opinion

Strongly 
Agree______ Agree

M + 2S 
M + S 
M

34
29
21
13
3

.6
-.1
- .8

-1.5
- 2.2

.00

.01

.07

.28
(.54)

.01 .07

.07 .14

.23 (.22)
(.37) .18
.34 .09

.37 (.55)
(.44) .34
.35 .13
.14 .03
.03 .00

M - S
M -2 S

interpretation of the variable shown in Table 6.3. Similarly, persons at attitude level M + S are 
expected to either agree or strongly agree with statements like 2 44 + 34 = 78 percent of the 
time; persons at level M, 35+13 = 48 percent of the time; persons at M - S ,  14 + 3=  17 percent 
of the time, and persons at level M -2 S ,  3 + 0 = 3 percent of the time.

In Figure 6.5a the response category probability curves are centered on Statement 2’s scale 
value cfe = — .9 logits. To read off the response probabilities for other statements For drugs, 
we need only move this shared pattern of curves to other positions on the For drugs varia-
ble. The response probabilities for Statement 4, for example, are obtained by moving the 
curves in Figure 6.5a further to the right and centering them on Statement 4 's scale value 
d4= + .6  logits.

Figure 6.5b shows the pattern of probability curves shared by the Against statements. Here, 
the Against curves are centered on the scale value of Statement 1, and so, can be used to read 
off the probability of any student making any particular response to Statement 1 on the Against 
scale. In both Figure 6.5a and Figure 6.5b the “ have no opinion” curve is less prominent 
than the other curves. This indicates that on these two scales the “ have no opinion” response 
was a relatively unattractive alternative for these students.

6 .6  COMPARING FO R  AND AG AIN ST  STATEMENTS

The ten statements for drugs and the ten statements against drugs were constructed to 
define one drug attitude variable. But by analyzing the For and Against statements separately, 
we have obtained two drug attitude estimates for each student. If the For and Against state-
ments define the same variable, as intended, persons who make high scores on the For state-
ments should make low scores on the Against statements. Whether responses to these two 
sets of statements can be combined and analyzed simultaneously to obtain a single attitude 
estimate for a student depends upon whether they are providing similar information about this 
student’s attitude towards drug use.

Measures from the For and Against scales are plotted against each other in Figure 6 .6 . The 
majority of the points in this plot do lie near the line which identifies “ for” as the opposite of 
“ against” . This indicates that the two sets of statements are providing similar information 
about the attitudes of the majority of students. It is consistent with our expectation that a
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person who is more for drugs should also be less against them. But several students lie some 
distance from this “ inverse” identity line. These are students whose responses to the state-
ments on the For and Against scales are substantially inconsistent.

The student farthest from the identity line is Person 29. From the demographic information 
accompanying her responses we know that she is a thirty-four year old white female. Her 
responses place her to the left of all the other students in Figure 6 .6  meaning that she is 
estimated to be the student least against drugs. But her location towards the bottom of Figure
6 .6  shows that she is also one of the students least for  drugs. This combination of attitudes 
is puzzling.

Person 29' s responses to the ten statements on the For drugs scale are

3 0 0 0 0 3 0 0 0 0

where we have ordered the statements by difficulty, with the statement most difficult to agree 
with on the right. She strongly disagrees (0) with all statements in favor of drugs except 
Statements 3 and 9, and thus makes the low score of 6 , implying a strong opposition to 
drugs. But her responses to the ten statements Against drugs are

0 0 0 4 4 0 0 0 0 1

where the statements are again ordered by difficulty. So she also strongly disagrees with most 
of these statements!
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Not only do these two scales give inconsistent information about this woman’s attitude, 
but her responses within each scale show inconsistencies. She disagrees with eight of the ten 
statements fo r  drugs. This would normally indicate a high level of opposition to drug 
use. However, she agrees with difficult Statement 3 “ I wish I could get hold of some pills 
to calm me down whenever I get up tight’ ’. This answer is inconsistent with her other responses 
and results in a fit statistic for her responses to the For scale of + 1.50.

Her responses to the statements on the Against scale are even more inconsistent and result 
in a fit of +2.59. In particular, she “ strongly agrees” with Statement 6 “ As a general rule 
of thumb, most drugs are dangerous and should be used only with medical authorization” . But 
“ strongly disagrees”  with Statement 9 “ Experimenting with drugs is dangerous if a person 
has any psychological problems” . Person 29' s negative set against sixteen of these twenty 
statements interferes with our attempt to measure her attitude towards drugs.
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Person 51 is also some distance from the identity line in Figure 6 .6 , but on the other side 
of the diagonal. This suggests that Person 51 is displaying a tendency to agree with both For 
and Against statements. His high score of 33 on the For statements makes him the person 
estimated to be most for drugs. He “ strongly agrees” with statements like

4. All drugs should be made legal and freely available.
10. People who use drugs are more fun to be with.
5. In spite of what the establishment says, the drug scene is really “ where it’s at” .

He is not, however, estimated to be least against drugs. This is because he also “ strongly 
agrees” with Against statements like

4. Students should be told about the harmful side effects of certain drugs.
10. Drugs can cause people to do or say things they might later regret.
9. Experimenting with drugs is dangerous if a person has any psychological problems.

Given Person 51's strong stance in favor of drugs on the For statements, these responses 
Against drugs are surprising. Person 51 ’s tendency to agree regardless of content interferes 
with our attempt to measure his attitude.

The decision to pool For and Against statements and to analyze them simultaneously 
depends on the extent to which the use of the response alternatives is the same for the two sets 
of statements, and also on the extent to which the two sets of statements provide consistent 
information about the attitudes of the students. From Figures 6.5a and 6.5b we can see that 
despite the tendency for students to make greater use of the extreme categories and less use 
of the middle noncommittal category when responding to statements Against drugs, the cate-
gories are used in similar ways with the two sets of statements. This suggests that it may be 
useful to reverse the scoring of the response alternatives for one set of statements and to 
analyze all twenty statements simultaneously.

That simplification will work well enough for most of these seventy-five students. But, 
as Figure 6 .6  shows, for some of them the For and Against statements produce substantially 
different attitude estimates. For these persons it is not reasonable to attempt a single drug 
attitude estimate by pooling their responses to the For and Against statements. What is called 
for is a diagnostic comparison of their For and Against measures to see whether an overriding 
response set has interfered with their sensitivity to statement content and spoiled our attempt 
to measure them.

In general we do not recommend pooling For and Against statements. Whether For and 
Against statements should be included in a questionnaire depends on whether the intended 
attitude variable needs both kinds of statements to be adequately represented, and whether 
problems with response set such as those illustrated by persons 29 and 51 in Figure 6 .6  are 
expected and need to be detected.

6.7 PERSON DIAGNOSIS

Table 6.7 shows the responses of eight students to all of the statements in the For and 
Against scales. Responses to the For and Against statements are shown separately. The
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statements in each set are ordered by difficulty, with the statements easiest to agree with on 
the left and the ones hardest to agree with on the right. The frequency with which each of 
the response categories was chosen, the person score, attitude measure and standard error 
associated with this measure are also shown. These eight persons have been selected because 
they typify the response patterns encountered in these questionnaire data.

The first person in Table 6.7, Person 74, is included because his responses are reasonably 
consistent with the statement difficulty ordering. Person 74 agreed with the weaker statements 
and disagreed with the stronger in both the For and Against scales. This consistency produces 
fit statistics in the Person Fit column of -0 .46  and -0 .86  which are close to their expected 
value of 0  and reflect the orderliness of this person’s responses.

On the far right of the table is the standardized difference between the For and Against 
attitude estimates. This statistic shows the extent to which Person 74's responses to the For 
and Against statements point to a single drug attitude estimate. In this case, the agreement 
is relatively good.

Person 31, however, has not made an orderly pattern of responses to either the For or the 
Against statements. The 4 and 3 in his pattern of responses to the For statements are incon-
sistent with the rest of his behavior. This produces a fit of +1.95. His responses to the 
Against statements are even more disorderly and produce the even more extreme fit value of 
+ 3.05. An examination of all twenty responses made by Person 31 shows him to have dis-
agreed and strongly disagreed with thirteen of the statements over both scales. This produces 
the large standardized difference of -2 .2 . This person’s responses to the attitude question-
naire are erratic and we must conclude that we have failed to measure his attitude towards 
drugs.

Person 29 was identified in Figure 6 .6  as a person who disagreed with a surprising number 
of statements on both scales. From the frequencies of category choice we see that sixteen of 
this woman’s twenty responses were either “ disagree” or “ strongly disagree” , even though 
ten of these twenty statements are for drugs, and ten are against. Her negative response set 
prevents us from combining her responses to the For and Against statements to obtain a 
meaningful attitude estimate. This is reflected in her very high standardized difference of 
-4 .4  and in her negative attitude estimates (-1 .5 5  and -0.77) on both the For and Against 
scales.

Person 65, identified from his large positive fit statistics ( + 2.35 and +2.15), is another 
interesting case. The unusual nature of this man’s responses can be seen from the frequencies 
with which he has used the extreme response categories. On ten of the statements he has 
strongly disagreed and on ten he has strongly agreed. We might describe this man as an 
“ extremist” . His responses are reasonably consistent (he is clearly against drugs), but he has 
used only the extreme response categories to express his attitude, ignoring the middle three.

The next three persons, 67, 69 and 78, all have relatively large negative person fit statistics 
on both the For and Against scales. Their standardized differences are small, indicating rea-
sonably good agreement between these two scales. However, these three persons all show 
a reluctance to commit themselves to extreme responses. In this they are the opposite of 
Person 65 (the “ extremist” ). Person 67 is particularly noncommittal. He uses the “ have no 
opinion” response six times. Persons 69 and 78 have resisted the “ have no opinion” response,
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but they have been reluctant to say that they feel strongly about any of these statements. We 
might describe these three persons as "conservatives” .

Finally, Table 6.7 gives the responses of the other person identified in Figure 6 .6 . Person 
51' s set to “ agree” with the statements whatever their content has produced a standardized 
difference of + 2.5. Twelve of his twenty responses were either "agree” or “ strongly agree”.

6 .8  DISCUSSION

This drug attitude questionnaire differs from the science questionnaire in that five rather 
than three response alternatives were provided, and both positively and negatively worded 
statements about drugs were used.

The practice of including both For and Against statements in attitude questionnaires stems 
from a concern over individual differences in response style. The observation that not all 
persons use response alternatives in the same way was first made in psychophysics experi-
ments. Angell (1907), for example, reported differences in the way respondents used the 
alternatives Clearly Louder, Louder, Like, Softer, Clearly Softer when comparing sounds.

Some individuals are more prone to express judgments of Like than others, and 
this difference corresponds to the difference between deliberate and impulsive 
temperaments. (Angell 1907, 254)

Similar tendencies, including the tendency for some persons to respond "True” rather 
than “ False”  and "Agree” rather than "Disagree” , were observed in educational achievement 
tests and attitude questionnaires. This led Cronbach (1946, 1950) to recommend “ reducing 
the five-choice pattern of the Likert-type scale to a two-choice judgment” , and

In view of the overwhelming evidence that many common item forms invite 
response sets, and in view of the probability that these sets interfere with 
accurate measurement, it will rarely be wise to build new tests around item 
forms such as "Agree—Undecided—Disagree” . (Cronbach 1950, 29)

It has become popular in attitude measurement to construct questionnaires with equal 
numbers of positively and negatively worded statements. This is done in the hope that ten-
dencies to favor “ Agree”  or “ Disagree”  will “ balance out” so that the effects on attitude 
measures of differences in response style will be eliminated. The behavior studied in this 
chapter shows that this balancing does not work. It is necessary to establish that responses 
to For and Against statements each provide consistent information about a person’s attitude 
before combining them to obtain a single attitude measure for that person. Rather than using 
For and Against statements to “ balance out” differences in response style, we use them to 
expose persons with unusual response tendencies. When persons show such tendencies it 
may be impossible to combine their responses to these two types of statements to obtain one 
interpretable attitude measure for them.

Individual differences in response style can interfere with our efforts to infer a single 
position for each person on one line of increasing opposition to drugs. Nevertheless, we do
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not recommend reducing this five-point Likert scale to a two-choice Disagree/Agree format. The 
increased precision of measurement made possible by the five-point format justifies its use in 
this questionnaire. The opportunity to distinguish between Person 65 who used only the most 
extreme alternatives and Person 78 who did not express a strong opinion on any statement is 
an additional reason to prefer the five-point format over two alternatives.



7 FEAR OF CRIME

So far we have used only one of the five measurement models in Chapter 3 to construct 
a “ Liking-for-Science” variable (Chapters 4 and 5) and an “ Attitude-to-Drugs”  variable (Chap-
ter 6). In this chapter we analyze responses to a third attitude questionnaire developed to 
measure college students’ fear of neighborhood crime. We analyze these data twice, first with 
the Rating Scale model and then with the Partial Credit model. This gives us an opportunity 
to compare these two approaches to the analysis of ordered category data.

7.1 A FEAR OF CRIME VARIABLE

The Evaluation Institute at the Westinghouse National Issues Center in Evanston, Illinois 
developed a nine-item questionnaire to measure college students’ fear of crime.* The nine 
items are shown in Figure 7.1. Three items ask students how concerned they are about being 
burgled, robbed or harmed. Another three ask students how likely they think it is that they 
will be victims of these crimes, and the remaining three ask students how afraid they are of 
these crimes.

There are two bases on which to anticipate the difficulty order of these nine items. Certainly 
the threat of being h a r m e d  is more frightening than the threat of being r o b b e d , and it would 
seem likely that being robbed is in turn more frightening than being BURGLED. Among the 
three states of fear, believing a crime is likely would seem to represent a higher state of fear 
than being afraid, and being afraid certainly represents a higher state of fear than merely being 
concerned. It is more difficult, however, to anticipate how these three crimes and these three 
states of fear will combine to define a fear-of-crime variable. Which represents a greater fear 
of crime—being concerned about being harmed, or believing that you are likely to be burgled?

As in the Liking-for-Science and Attitude-to-Drugs scales, a fixed set of response alter-
natives (“ Not at All” , “ Not Too” , “ Pretty”  and “ Very” ) is used with every item in the 
questionnaire. A typical item is

8. How afraid are you that someone will b r e a k  i n t o  your house or apartment when no one 
is home?

A maximum score of 9 x 3  = 27 is made for responding “ Very” to all nine items on the ques-
tionnaire, and a minimum score of 9 x 0  = 0, for responding “ Not at AH” to every item. The 
data come from 202 Chicago college students.
* We are grateful to Terry Baumer for the opportunity to study these data.

V e ry ___
Pretty . . .  
Not too . 
Not at All

3
2

0

137
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FIGURE 7.1
A FEAR OF CRIME QUESTIONNAIRE

CR 1. W hen you are walking alone in your neighborhood at night, how concerned 
are you that som eone will t a k e  s o m e th in g  from you by force o r threat?

CB 2. How concerned are you that som eone will b r e a k  INTO your house or 
apartm ent when no one is at home?

CH 3. W hen you are walking alone in your neighborhood at night, how concerned 
are you that som eone will h a rm  y o u ?

LR 4. W hen you are walking alone in your neighborhood at night, how likely is it 
that som eone will t a k e  s o m e th in g  from you on the street by force or 
threat?

LH 5. W hen you are walking alone in your neighborhood at night, how likely is it 
that som eone will h a rm  y o u  on the street?

LB 6. During the course o f a year, how likely is it that som eone will BREAK INTO 
your house o r apartm ent when no one is home?

AR 7. W hen you are walking alone in your neighborhood at night, how afraid are 
you that som eone will t a k e  s o m e th in g  from you by force or threat?

AB 8. H ow afraid are you that som eone will b r e a k  in to  your house o r apartm ent 
when no one is home?

AH 9. W hen you are walking alone in your neighborhood at night, how afraid are 
you that som eone will h a rm  y o u ?

7.2 RESULTS OF RATING SCALE ANALYSIS

Table 7.2 shows the UCON item statistics from the Rating Scale analysis. The items 
appear twice in this table, in scale value order and fit order. The item which defines the highest 
level of fear on this questionnaire, because it has the most positive scale value estimate, is 
Item 5 “ When you are walking alone in your neighborhood at night, how likely is it that someone 
will h a rm  YOU on the street?” . This implies that only a student with a relatively high fear of 
crime will believe that he is likely to be harmed. The item which defines the lowest level of 
fear on this questionnaire, because it has the most negative scale value estimate, is Item 2 
“ How concerned are you that someone will b r e a k  INTO your house or apartment when no one 
is at home?” This implies that a student does not have to be much afraid of crime to be 
concerned about being burgled.

The item fit statistics in Table 7.2 range from -  3.83 for Item 4 to + 2.64 for Item 2. Three 
items, 4, 5 and 7, have rather large negative misfit statistics. The two items with the most 
positive misfit statistics, Items 6 and 2, are both concerned with burglary. The mean (-.52 ) 
and standard deviation (2.37) of these nine fit values are somewhat off their expected values 
of zero and one. Whether this much departure from expectation has any practical implications 
requires further investigation.

Even though the fit of these items to the Rating Scale model may not seem particularly 
good, the item separation and reliability indices show that the nine items are reasonably well 
separated in difficulty, and an examination of their difficulty order shows them to be sensibly 
ordered, with the three concerned items defining the lowest levels of fear, and the three likely 
items defining the highest. This is one of the orders we anticipated, and the rating scale



____________ T A B L E  7.2  ____________
IT E M  ST A T IST IC S F R O M  R A T IN G

S C A L E  A N A L Y S IS

SCALE VALUE ORDER FIT ORDER
ITEM

NAME
SCALE
VALUE ERROR

FIT
t,

ITEM
NAME

SCALE
VALUE ERROR

WEIGHTED 
v. si

FIT
t,

LH  5 0.79 0.17 -3 .64 L R 4 0.62 0.17 0.62 0.12 -3 .83
L R 4 0.62 0.17 -3 .83 LH 5 0.79 0.17 0.63 0.12 -3 .64
LB 6 0.31 0.16 1.94 AR 7 0.28 0.16 0.73 0.11 -2 .64
AR 7 0.28 0.16 -2 .64 AH  9 0.19 0.16 0.92 0.11 -0 .70
A H  9 0.19 0.16 -0 .70 AB 8 -0 .15 0.16 1.01 0.11 0.09
AB 8 -0 .15 0.16 0.09 CR 1 -0 .43 0.15 1.04 0.11 0.45
CR 1 -0 .43 0.15 0.45 CH 3 -0.51 0.15 1.11 0.11 1.01
C H 3 -0 .51 0.15 1.01 LB 6 0.31 0.16 1.23 0.11 1.94
CB2 -1 .1 0 0.15 2.64 C B 2 -1 .10 0.15 1.29 0.10 2.64
Mean
S.D.

0.00
0.60

0.16
0.01

-0 .52
2.37

0.95
0.25

0.11
0.00

-0 .52
2.37

Adjusted Test S.D. = .58 Error RMS = .17 Item Separation = .58/. 17 = 3.4 
Sample Reliability of Item Separation =  3.42/(l+ 3 .4 2) = .92 
Sample Size = 201 Mean = -1 .4 6  Unadjusted S.D. = 2.30
Adjusted Sample S.D. = 2.16 Error RMS = .80 Person Separation = 2.16/.80 = 2.7 
Test Reliability of Person Separation = 2.72/(l +2.72) = .88
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analysis shows that this “ state of fear”  order dominates these nine items. Our second order 
of crimes, from burgled through robbed to harmed is born out only when combined with the 
most serious state of fear, likely. This sensible arrangement of the items suggests that in spite 
of the somewhat disappointing fit values, we may be able to build a useful fear-of-crime variable 
from these data and encourages us to continue.

The rating scale analysis also provides three “ threshold” estimates which define four 
category probability curves for these fear-of-crime items. These curves, displayed in Figure 
7.2a, show that only students with attitude estimates more than 4.17 logits below the scale 
value dj of an item are likely to respond “ Not at All” to that item. For students with estimates 
between dt - 4.17 and dt + .83 the most probable response is “ Not Too” ; for students with 
estimates between dj + .83 and dj + 3.34, the most probable response is “ Pretty” , and only 
students estimated to be more than 3.34 logits above the scale value of an item are likely to 
respond “ Very” to that item.

The Rating Scale analysis of these fear-of-crime data is summarized in Figure 7.2b. The 
variable is laid out at the bottom of Figure 7.2b running from low fear on the left to high fear 
on the right. It is marked off in logits and in the corresponding raw scores.

The student distribution at the bottom of Figure 7.2b shows that student estimates range 
from -6 .12  logits (raw score =1) for the five students on the far left to +5.31 logits (raw 
score = 26) for the three students on the far right. When the number of students in a score 
group exceeds nine, the count is printed vertically (e.g., there are seventeen students with an 
estimate of —4.81 logits, ten with an estimate of -3 .93  logits).

The body of Figure 7.2b shows the difficulties of the three steps from “ Not at All” to 
“ Very” for each item. These step estimates have been calculated from the scale value esti-
mates in Table 7.2 and the threshold estimates h/=  -4 .17 , Ii2 = + .83 and hj=  +3.34 in Figure 
7.2a. The first step in each item is from “ Not at AH” to “ Not Too” . The estimated difficulty 
of this step, da  = d j +h /  = d j -  4.17 is labelled ‘1’. Students to the right of dn are more likely 
to respond “ Not Too” than “ Not at AH” to item i. The second step up this ladder of increasing 
fear is from “ Not Too” to “ Pretty” . The estimated difficulty of this second step, da = 
dj+ h2 = dj + .83, is labelled ‘2’. Students to the right of d i2 are more likely to respond “ Pretty” 
than “ Not Too” to item /. Finally, the third step from “ Pretty” to “ Very” , with estimated 
difficulty djj = </, + /ij = dj +  3.34, is labelled ‘3’. Students to the right of da  are more likely 
to respond “ Very” than “ Pretty” to item /. To facilitate the integration of our analysis with 
our prior expectations we show these nine items in the concerned-afraid-likely and BURGLED- 
ro b b e d -h a rm e d  orders which we anticipated.

Figure 7.2b can be used to read off any student’s most probable response to any of these 
nine items, and so, provides a detailed interpretation for every score on this questionnaire. The 
seven students with an estimate of -4 .35  logits (raw score = 4), for example, are expected to 
respond “ Not at AH” to the six questions at the top of Figure 7.2b which ask how likely they 
believe it is that they will be robbed, harmed or burgled, and how afraid  they are of these 
crimes. But because they are to the right of the first step in Items 7, 3 and 2, we expect them 
to respond “ Not Too” to these three questions which ask how concerned  they are about being 
victims of these crimes. Similarly, the eight students with an estimate of + .49 logits (raw 
score =13) are expected to respond “ Not Too” to the six questions at the top of Figure 
7.2b. But because they are to the right of the second step in Items 7, 3 and 2, we expect them
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to respond “ Pretty” to the three questions which ask how concerned they are about being 
burgled, robbed or harmed.

The repeated pattern in Figure 7.2b exposes the basic structure of a rating scale analy-
sis. Under the Rating Scale model, the pattern of step difficulties (labelled ‘1', ‘2’ and ‘3’ in 
Figure 7.2b) is dictated by the threshold estimates hi, h2 and h3 estimated once for all nine 
items (Figure 7.2a). The only modelled difference between items is the difference in location 
di of this fixed pattern.

In this analysis we have placed each item’s location di at the mean of its three step 
estimates. This follows from imposing the constraint h. = 0 on the three threshold esti-
mates. We could, however, have chosen some other constraint on hi, h2 and h3. The alter-
native constraint h/ = 0 , for example, would have placed dt at the first step ‘1* in each 
item. Because the choice of the necessary constraint on the threshold estimates, and hence 
the definition of item “ location” dh is arbitrary, and because this choice does not influence the 
item step estimates or the interpretation of the variable, there is no point in showing the item 
scale values dj of Table 7.2 in Figure 7.2b.

7.3 RESULTS OF PARTIAL CREDIT ANALYSIS

The Partial Credit analysis of these fear-of-crime data differs from the Rating Scale analysis 
only in that it estimates the steps in each item separately without requiring that the pattern of 
step difficulties be the same for each item. These estimates </,/, di2 and di3, their standard 
errors si2 and su, and the fit of each item to the Partial Credit model are shown in Table 
7.3a.

__________ TABLE 7.3a___________
ITEM STATISTICS FROM PARTIAL 

CREDIT ANALYSIS

ITEM ITEM STEP ESTIMATES STANDARD ERRORS ITEM FIT
NAME d „ d a du Sil sa sa vf S i t,
LH 5 -3.41 1.57 5.16 .23 .27 .96 0.66 .11 -3.54
L R 4 -3.65 1.52 4.43 .23 .27 .86 0.65 .11 -3.49
LB 6 -4.12 1.44 3.44 .25 .27 .65 1.26 .12 2.11
AH 9 -3.53 0.67 3.09 .23 .24 .52 0.78 .11 -2.12
AR  7 -3.69 1.05 2.98 .24 .25 .52 0.65 .11 -3.49
A B 8 -4.52 0.85 3.04 .27 .24 .52 1.03 .11 0.29
CH 3 -4.02 -0.08 2.54 .25 .21 .40 0.96 .10 -0.38
CR 1 -3 .80 -0.04 2.40 .24 .22 .39 0.82 .10 -1.86
CB2 -5 .49 -0.31 2.45 .33 .21 .38 1.32 .11 2.84

Mean 0.00 0.36 0.90 .11 -1.07
S.D. 3.18 0.20 0.26 .01 2.43
Adjusted Test S.D. = 3.15 Error RMS = .42 Step Separation = 3.I5/.42 = 7.6
Sample Reliability of Step Separation = 7.62/(l + 7.62) = .98
Sample Size = 201 Mean = -1.47 Unadjusted S.D. = 2.24
Adjusted Sample S.D. = 2.10 Error RMS = .78 Person Separation = 2.10/.78 = 2.7
Test Reliability of Person Separation = 2.72/( I + 2.72) = .88
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Once again we see that Items 4, 5 and 7 have rather large negative fit statistics, and that 
the three items with positive fit statistics (Items 2,6  and 8) all refer to fear of being burgled. The 
mean and standard deviation of the item fit statistics are still somewhat off their expected values 
of zero and one. Most of the items have negative fit values, implying that responses to these 
items are closer to their modelled values than expected. This might be mistaken to mean that 
our ability to predict a student’s responses to these items from his total test score is better than 
expected. But the negative fit statistics are more likely to mean that these items are so similar 
in content that responses to them are not as independent of each other as the model expects. In 
that case, the error of measurement is larger than expected because the number of effective 
replications is less than the number of items.

The item step estimates from Table 7.3a are displayed in Figure 7.3 where they are labelled 
‘1’, ‘2’ and k3’. These estimates have the same interpretation as the step estimates in Figure 
7.2b, i.e., students to the right of the £’th step in each item are more likely to respond in 
category k than in category £ -  1 to that item. The difference is that now, rather than being 
estimated under the constraint that the pattern of step difficulties be the same for all items, 
du, dn and dy have been estimated separately for each item.

The similarity of Figures 7.2b and 7.3 is striking. The fact that the pattern of step estimates 
in Figure 7.3 is much the same for all nine items supports the use of the Rating Scale model 
with these data. However, on closer inspection, three small but informative differences be-
tween Figures 7.2b and 7.3 can be seen.

First, on the left of Figure 7.3 we see that the difficulty of the first step from “ Not at AH” 
to “ Not Too” depends more upon the seriousness of the crime than upon the state of fear. This 
is laid out in Table 7.3b. The easiest items to respond “ Not Too” to are Items 2, 8 and 6— 
the three burglary items. The very lowest level of fear on this variable is defined by the step 
from “ Not at All” to “ Not Too” concerned about being burgled. A slightly higher level of 
fear is defined by the step from “ Not at All” to “ Not Too’.’ afraid of being burgled, and a still 
higher level of fear is defined by the step from “ Not at All” to “ Not Too” likely to be burgled.

Returning to Figure 7.2b we see that under the Rating Scale analysis, a student who scores 
4 on this questionnaire is expected to respond “ Not Too” to only the three items which ask 
how concerned he is about these crimes. However, when the item steps are estimated sep-

__________ I TABLE 7.3b_I___________
---------------------------------  ESTIMATED DIFFICULTY OF THE----------------------------------

FIRST STEP IN EACH ITEM

FIRST STEP
ITEM CRIME STATE OF FEAR DIFFICULTY CRIME MEAN
LH 5 likely -3 .4
AH 9 HARMED afraid -3 .5 -3 .7
CH 3 concerned -4 .0

L R 4 likely -3 .6
AR 7 ROBBED afraid -3 .7 -3 .7
CR 1 concerned -3 .8

LB 6 likely -4.1
AB 8 BURGLED afraid -4 .5 -4 .7
CB 2 concerned -5 .5
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arately, as in Figure 7.3, a student who scores 4 is expected to respond “ Not Too” to the three 
burglary items. By removing the Rating Scale constraint we have detected a fine structure to 
this fear-of-crime variable which was smoothed out by the Rating Scale analysis. At the low 
end of the variable the dominance of logical orders is reversed. Here it is the most prevalent 
and least serious crime burglary which takes precedence over state of fear.

Figure 7.3 also shows that the difficulty of the second step from “ Not Too” to “ Pretty” 
in each of these items is determined not so much by the seriousness of the crime as by the state 
of fear described in the item (i.e., concerned, afraid or likely). These students found it easier 
to say that they were “ Pretty”  concerned than to say that they were “ Pretty”  afraid, or that 
the crime was “ Pretty” likely, regardless of the crime.

Finally, it is the third steps in likely Items 6, 4 and 5 which define the high end of this 
variable. To take these steps, a student must believe that he is “ Very” likely to be burgled, 
robbed and even harmed. At the most fearful end of the variable it is again the seriousness 
of the crime which shapes the variable rather than the state of fear.

The Partial Credit analysis brings out a subtle but meaningful interaction between seri-
ousness of crime and state of fear. At the extremes of high and low fear, it is the seriousness 
of the crime which dominates. But in the middle region of the variable, where most of these 
students are estimated to be, it is the state of fear which rules.

7.4 COMPARING SCALE AND CREDIT ANALYSES

7.4.1 Comparing Step Estimates

We have used both the Rating Scale and Partial Credit models to analyze the fear-of-crime 
data. To compare these analyses, we display the differences between the s c a l e  and CREDIT 
item step estimates in Figure 7.4a. The arrows show the displacement of c r e d i t  step estimates 
in Figure 7.3 from the corresponding SCALE estimates in Figure 7.2b.

For some items, like burglary Items 2, 6 and 8, the match between the SCALE and c r e d i t  
step estimates is very good. For others, like Items / ,  3 and 9, the match is not as good. The 
largest difference between the SCALE and c r e d i t  estimates in Figure 7.4a is for the third step 
in Item 5. The SCALE estimate for this step is d5 + hj = .79 + 3.34 = 4.13 logits. The c r e d i t  
estimate is c/ji = 5.16 logits, making the difference 5.16-4.13 = 1.03 logits. This step, how-
ever, is very difficult for these students to take, and so, has a large c r e d i t  calibration error 
(Ss3 = 0.96 logits). When considered in terms of its estimation error, this difference represents 
only 1.03/.96 = 1.07 standard error units.

Each of the differences shown in Figure 7.4a has been divided by the corresponding c r e d i t  
calibration error for that step. The resulting standardized differences are shown in Table 
7.4a. These standardized differences have been accumulated to give a statistic which sum-
marizes the match of the SCALE step estimates for each item to the c r e d i t  estimates for that 
item. If we use SCALE estimates dt and hj to define the c r e d i t  parameters 8y = </, + hj, then the 
statistic on the right of Table 7.4a should have a mean near zero and a standard deviation near 
one. Table 7.4b shows how this statistic is calculated.
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TABLE 7.4a
t tA A M im iN U  1H E, M A 1L .H  BETWEEN

SCALE AND CREDIT
STEP ESTIMATES

ITEM STANDARDIZED DIFFERENCES MATCH
NAME Z.7 za za I
LH  5 - .1 3 - .1 9 1.07 - .6 9
L R 4 - .41 .27 .55 -1.32
LB 6 -  1.01 1.14 -.31 .03
A H  9 1.93 -1 .47 - .8 4 1.37
AR 7 .84 - .2 4 -1.23 -.0 5
A B 8 - .7 5 .71 -.2 9 - .7 3
C H 3 2.66 -1.85 -.71 2.27
CR 1 3.27 -2 .04 -1 .33 3.10
C B2 - .6 8 - .2 2 .55 -1.03
Mean — 0.03 .33
S.D. 1.56 1.27

Formulation of z and t explained in Table 7.4b

The statistics in Table 7.4a confirm what we have already noted in our comparison of 
Figures 7.2b and 7.3—the Rating Scale and Partial Credit analyses of these data produce very 
similar item estimates. The items for which the SCALE-CREDIT match is poorest are Items 1, 
3 and 9. The dominance of state of fear over seriousness of crime which characterizes the 
SCALE analysis, however, is found to hold only for the central step from “ Not Too” to 
“ Pretty” . The c r e d i t  analysis brings out that at the lowest and highest levels of fear, the 
seriousness of the crime counts more than the state of fear.

7.4.2 Comparing Item Fit Statistics

The SCALE analysis provides three step estimates d, + A/, dj + h2 and dj + hj for each item 
on this fear-of-crime questionnaire. When these item estimates and a student estimate are

m

substituted in the model, an expected score E ni=  X  M*nik can be estimated for each of the nine
k=0

items for each of the 202 students. The comparison of each student’s observed score xni with 
this estimate of their expected score Ent forms the basis for testing the fit of an item (or student) 
to the Rating Scale model. The item fit statistics in Table 7.2 show that these nine items do 
not fit the Rating Scale model as well as we might like. Three items (5, 4 and 7) have large 
negative fit statistics, and Item 2 has a large positive fit statistic.

The fit of an item to the Partial Credit model can be similarly evaluated by substituting the 
step estimates du, da and da into the model and re-estimating each student’s expected score 
accordingly. Table 7.3a shows the fit of the nine items to the Partial Credit model.

Removing the Rating Scale constraint on the item step estimates and estimating each of 
the twenty-seven item steps separately reduces the squared differences between observations 
x ni and estimated expectations E ni. For some items the difference between SCALE and c r e d i t  
step estimates is so small that there is very little difference between their SCALE and c r e d i t  
fit statistics. Other items like / ,  3 and 9 which have somewhat different step estimates under 
these two analyses have lower fit mean squares for the c r e d i t  analysis.
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  TABLE 7.4b _____
SCALE-CREDIT MATCH

Step parameters “ defined” .  _  , ,
by SCALE estimates <+ 7

CREDIT Step Estimate d y  Error Sy

Difference d y  -  by

Standardized Difference zy= (d y  -  by) / sy

Mean Square Match v,- = Y  z l  / m  df=m
j = i

Standardized Match ti=(v'/i - I )  3/q + q/3 q = V2/m

Item 5
85/ = .79-4.17 = -3 .38
852 = .79 + 0.83 = +1.62
8» = .79 + 3 .34  = + 4.13

ds, = -3.41 ss, = .23
ds2 = 1.57 sS2 = .27
d53 = 5.16 s 53 = .96

Zsi = (-3 .41  + 3.38)/ .23 = -.1 3
ZS2 = (1.57-1.62) / .27 = -.1 9
Z53 = (5 .16-4.13)/.96 = 1.07

( - .  13)2 + ( - .  19)2 + (1.07)2 1.20vj =     = —— = .40

ts = (.40,/7-  1)3.67 + .27 = - .6 9  q = V2/3 = .82

The item fit statistics from the SCALE and c r e d i t  analyses are plotted against each other 
in Figure 7.4b. The five items along the identity line have very similar s c a l e  and c r e d i t  step 
estimates and hence very similar fit statistics under the two analyses. Items 1 ,3 ,9  and possibly 
7, on the other hand, have rather different fit statistics under the SCALE and CREDIT analyses, 
and so, lie some distance from the identity line in Figure 7.4b. For these items the fit mean 
squares are substantially reduced, making their fit-t’s more negative when the Rating Scale 
constraint is removed and the steps in these items are estimated directly.

An interesting consequence of this change in the fit of Items 1, 3 and 9 is the separation 
of the burglary items 2, 6 and 8 from the assault and robbery items. When the item steps are 
estimated individually, the fit statistics for the three burglary items are positive, and the fit 
statistics for the six assault and robbery items are negative. This suggests that the burglary 
items may not define quite the same fear-of-crime variable as the other six items.
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  FIGURE 7.4b ___
ITEM FIT STATISTICS 

CREDIT vs SCALE

SCALE Fit

We could also compare the SCALE and CREDIT fit statistics for each item to see whether 
they are significantly different. One way to do this is to begin with the weighted mean squares 
from the two analyses.

N  N

From SCALE ut = 'Z (x ni- E sJ 2 / 'Z  w sm
n = 1 n — l

N  N

From c r e d i t  v, =  2  (xni- E cJ 2 / X  w cm
n —l  n = I

If person and item parameters were known so that E  and W were exact, then NLu{ and NLvj 
would each be \ ^ l -  Since the parameters must be estimated, the N L  degrees of freedom reduce 
to /  = N ( L - l )  — (m + L — 2) for NLitj and g = N (L — 1) -  ( m L -  I )  for NLvt.
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___________  TABLE 7.4c___________
REDUCTION IN RESIDUALS FROM 

SCALE TO CREDIT

ITEM SCALE CREDIT REDUCTION IN RESIDUALS
NAME MN SQ MN SQ DIFFERENCE MN SQ FIT

i ui u, ~ vi r( ti
LH 5 .63 66 *
LR 4 .62 65 *
LB 6 1.23 1.26 *

AH 9 .92 .78 14 1.64 1.6
AR  7 .73 65 .08 0.96 0.0
A B 8 1.01 1 03 *

CH 3 1.11 96 15 1.77 1.9
CR 1 1.04 .82 .22 2.53 3.2
CB 2 1.29 1 32 *

Mean .95 90
S.D. .25 26

r = (fu -  gv)IL(f-g) = (1598« — 1582v)/144 /  = M L - 1) -  (m + L -2 )  = 1598
s = [2 /(L -lM m -l)]fe = (l/8)*» = .35 8 = M L -  1) -  (m L - 1) =1582
t = (/•**-1X3/*) + (5/3 = 8 .4 9 ^ — 1) + .12 f ~ g  = (m -U ( L - l )  = 26

u = 2 , u - E sy i 2 w s v = 2 u - £ ry /5> c
Although ^(or- E sy  > when "Zws < 2> o then u v is possible.

TABLE 7.4d
C O M P A R IN G  S C A L E  A N D  C R E D IT

FIT ANALYSES 0

SCALE CREDIT STEP RESIDUAL
ITEM FIT FIT DIFFERENCE MATCH REDUCTION

NAME •s lc ■if tm 1,
LH 5 -3 .6 —3.5 —0.1 -0 .7
L R 4 -3 .8 - 3.5 - 0.3 -1 .3
LB 6 1.9 2.1 - 0.2 0.0

AH 9 -0 .7 _ 2.1 1.4 1.4 1.6
AR  7 -2 .6 - 3.5 0.9 0.0 0.0
AB 8 0.1 0.3 - 0.2 -0 .7

CH 3 1.0 . 0.4 1.4 2.3 1.9
CR 1 0.4 —1.9 2.3 3.1 3.2
CB 2 2.6 2.8 - 0.2 -1 .0
Mean -0 .5 _ 1.1 0.6 0.3
S.D. 2.4 2.4 1.0 1.6
Source Table 7.2 Table 7.3a Table 7.4a Table 7.4c

A fit statistic for the improvement of CREDIT over SCALE for any item i can be calculated 
from the mean square

n  =  { f U i -  g V i ) I H f -  g )

with variance
s? =  2 I ( m -  1 ) (L -  1)
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and standardization
U = ( /f - l) (3 /s ,)  + (5,-/3)

The results of these SCALE-CREDIT fit comparisons are shown in Table 7.4c. A mean 
square r and its standardization t are shown for Items 1 ,3 ,7  and 9—the four items below the 
identity line in Figure 7.4b. These statistics show that the only item for which there is a clear 
improvement in fit from the SCALE to the c r e d i t  analysis is Item 1 (concerned about being 
robbed), although Items 3 and 9 come close.

Another very simple approach is to use the differences between the SCALE and c r e d i t  
item fit t ’s. We have done this in Table 7.4d where we also compare the results of all three 
approaches to gauging the extent to which the c r e d i t  analysis is an improvement over the 
SCALE analysis. Table 7.4d shows that, for these data, the three approaches lead to identical 
conclusions. The fit of Item 1 “ Concerned about being robbed” is clearly improved by the 
c r e d i t  analysis. The improvements in Items 3 “ Concerned about being harmed” and Item 
9 “ Afraid of being harmed” are marginal. The fit of the other six items is not significantly 
improved.

7.5 DISCUSSION

When we offer the same set of ordered response alternatives with every item in a ques-
tionnaire, we expect that the relative difficulties of the steps within each item will not vary 
much from item to item. This expectation is implemented in the Rating Scale model which 
estimates one pattern of item steps for every item in the questionnaire (Figure 7.2b).

Whether or not an item fits the Rating Scale model depends in part on how closely this 
common pattern of step estimates matches the estimates that would have been obtained had 
they been estimated with the Partial Credit model (Figure 7.3). The match between the SCALE 
and CREDIT step estimates seems good enough to support the use of the Rating Scale model 
with this questionnaire.

The Partial Credit analysis, however, does expose a fine structure in the fear-of-crime 
variable. This fine structure is lost in the Rating Scale analysis which underestimates the 
difficulty of the first step and overestimates the difficulty of the second and third steps in Items 
1, 3 and 9. While these differences are small, they make sense and so provide additional 
insight into the nature of this variable.



8 KNOWLEDGE OF PHYSICS

In this chapter we apply our measurement method to build a knowledge-of-physics variable 
from performances on a school achievement test. We will analyze these data first using the 
Dichotomous model and then the Partial Credit model. This will give us an opportunity to 
compare the results of these alternative approaches.

The physics data were collected by the National Foundation for Educational Research in 
England and Wales using an “ answer-until-correct” scoring format.* This format gives each 
student immediate feedback telling him whether his first choice on a multiple-choice question 
is right or wrong. If his first choice is correct, the student receives full credit for that question 
and goes on to the next. If incorrect, he is allowed a second attempt. A correct answer on 
the second attempt earns partial credit. But if the second choice is also incorrect, then the 
student receives no credit for the question. A typical question on this thirty-item physics test 
is shown in Figure 8.0. The correct answer is alternative A.

23. Jack weighs more than John. Where should the extra weight be placed to 
balance the seesaw?

'mtmwtwtnrmmmmnr* rrr77'

Twenty-one of the 321 students who took this item gave alternative A as their third 
choice. These twenty-one students thought that both B and C were better positions for the 
weight than A. They received no credit, and earned a score of 0 on this item.

Another forty-two students gave alternative A as their second choice. These students 
first chose either B or C as a better position for the weight than A. Because they were able 
to give the correct answer on their second attempt, these forty-two students earned a score of 
1 on the item. The remaining 258 students gave alternative A as their first choice, and so, 
earned the maximum score of 2 .

* We are grateful to Bruce Choppin, Andy Stillman and Christopher Whetton for making these data available to us.

FIGURE 8.0
KNOWLEDGE OF PHYSICS 

QUESTION 23

JOHN

A.

152
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This scoring format defines three ordered performance levels

Right Right Right
Third Second First
Try Try Try

0 1 2

In this chapter we will use performances scored in this way to build a knowledge-of-physics 
variable and to measure the physics knowledge of 321 students.

8.1 ANSWER-UNTIL-CORRECT SCORING

Answer-until-correct (AUC) scoring originated with the Troyer-Angell punchboard. This 
was a cardboard answer sheet upon which students recorded their answers by punching out 
perforated circles corresponding to the options they chose. If the correct option was chosen, 
a red dot was exposed and the student moved on to the next question. If no dot appeared, 
then the student had the opportunity to re-read the question and try again. A student’s score 
on each item (in this case counting failure rather than success) was the number of circles he 
had to remove to expose the red dot (Jones and Sawyer 1949).

Paper answer sheets have also been used with answer-until-correct scoring. Students 
record their answer to each question either by scratching the surface from a shield corresponding 
to the option they have chosen, or by marking the answer sheet with a special pen. If the 
option chosen is correct, a [7] is exposed. If it is incorrect, an [3 appears.

When a test is taken interactively at a computer terminal, still more detailed feedback can 
be provided. Incorrect responses can be used to diagnose misconceptions and gaps in a 
student’s knowledge, to alert the student to the need for remedial work and to offer items of 
more appropriate difficulty.

Performances on multiple-choice questions are usually scored dichotomously, depending 
on whether or not the correct answer is selected in one attempt. Under AUC scoring, however, 
performances can be scored into several ordered performance levels. This raises the possi-
bility, when students’ knowledge is incomplete, of making more precise estimates of ability 
from these more detailed records of performance.

8.2 ANALYZING PERFORMANCES DICHOTOMOUSLY

We begin our analyses by scoring performances on the thirty items dichotomously. The 
two ways to dichotomize the original three-category data are shown in Table 8.2a. The first 
of these scoring schemes (001) corresponds to the usual right/wrong scoring of performances 
and gives no credit for getting an item correct on a second try. The second (Oil) scheme gives 
full credit for getting an item correct in two tries, but does not give additional credit for getting 
an item correct on the first try.

Table 8.2b shows the number of students succeeding in one, two and three attempts at 
each of these thirty physics items. (Fifteen of the items allow for five attempts. To simplify



_________  TABLE 8.2a _________
RESCORING THE PHYSICS DATA

RIGHT RIGHT RIGHT
THIRD SECOND FIRST

TRY TRY TRY

Original Scoring 0 1 2

Right First Try (001) 0 0 1

Right in Two Tries (011) 0 I 1

TABLE 8.2b
11 EM 5CUKE V cL lU K S

TV=321 (0) (1) (2)
RIGHT RIGHT RIGHT

ITEM THIRD SECOND FIRST
NAME TRY TRY TRY

1 12 29 280
2 152 77 92
3 70 51 200
4 103 75 143
5 102 62 157
6 40 67 214
7 146 36 139
8 79 73 169
9 117 58 146

10 143 58 120
11 52 24 245
12 87 64 170
13 118 90 113
14 68 62 191
15 177 81 63
16 41 75 205
17 71 104 146
18 35 59 227
19 11 112 198
20 46 43 232
21 57 80 184
22 31 72 218
23 21 42 258
24 81 102 138
25 108 107 106
26 36 77 208
27 47 69 205
28 36 70 215
29 123 105 93
30 144 92 85

Totals 2354 2116 5160
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TABLE 8.2c
11 E M  5 1 A 1 1 5 1 K J5

SCORING (001)

ITEM DIFFICULTY ERROR FIT FIT
NAME d s MS SE 1

1 -1.91 .17 1 04 .12 .36
2 1.20 .13 98 .06 -.3 0
3 - .3 8 .12 1 01 .05 .29
4 .42 .12 89 .04 -2.63
5 .23 .12 1 10 .04 2.28
6 - .6 0 .13 1 10 .05 1.84
7 .48 .12 83 .04 -4.13
8 .06 .12 98 .04 -.5 9
9 .38 .12 89 .04 -2.68

to .76 .12 1 10 .05 2.04
11 -1 .12 .14 93 .07 -1.03
12 .04 .12 1 02 .04 .39
13 .86 .13 1 06 .05 1.11
14 - .2 5 .12 1 10 .04 2.17
15 1.75 .15 1 07 .09 .78
16 - .4 6 .12 86 .05 -3.01
17 .38 .12 1 02 .04 .48
18 - .8 0 .13 90 .06 -  1.71
19 - .3 5 .12 .99 .05 - .2 0
20 - .8 9 .13 .90 .06 -  1.74
21 - .1 5 .12 1.10 .04 2.37
22 - .6 6 .13 1.04 .05 .76
23 -1 .37 .15 .90 .08 -1.23
24 .49 .12 .98 .04 - .4 6
25 .97 .13 .98 .05 - .3 2
26 - .5 0 .12 .97 .05 - .6 7
27 — .46 .12 .85 .05 -3 .22
28 -.61 .13 .96 .05 -.8 0
29 1.18 .13 1.11 .06 1.75
30 1.32 .14 1.25 .07 3.54

Mean .00 .13 1.00 .05 -.1 5
S.D. .86 .01 10 .02 1.88

Adjusted Test S.D = .85 Error RMS = .13 Item Separation = .85/. 13 = 6.4
Sample Reliability of Item Separation = 6.42/( 1 + 6.42) = .98
Sample Size = 321 Mean *= .19 Unadjusted S.D. = .85
Adjusted S.D. = 74 Error RMS = 43 Person Separation = ,74/.43 = 1.7
Test Reliability of Person Separation = 1.72/(1 + 1.72) = .74

this analysis we have scored performances on these items into only three categories by giving 
students who took three, four or five attempts at an item the lowest score 0). Columns (1) and
(2) of Table 8.2b are needed for the partial credit (012) analysis of these data. For the (001) 
analysis, only the counts in Column (2) are needed. For the (011) analysis the required counts 
are obtained by adding column (1) to column (2). We will investigate all three scoring schemes.

8.2.1 Right First Try (001)

Under the first dichotomous scoring scheme a student scores 1 if he is successful on his 
first try and zero otherwise. We have analyzed these rescored data using Rasch’s Dichotomous 
model. The results of the item calibration are shown in Table 8.2c
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FIGURE 8.2b
U E .M 5  / ,  J  AJND JO

7. A block of iron weighs 40 newtons at room Temperature. When it is heated until it is red hot it gets 
bigger. How much will it weigh when red hot?

A) 39 newtons B) 40 newtons C) 40.5 newtons D) 41 newtons 
E) 42 newtons.

3 .  Where can a je t plane not fly?

A) Over deep water.
B) Over high mountains.
C) Over mountains on the moon
D) Very low.
E) 8 miles above the earth.

30.

K

Two men try to lift the same weight by pulling in different directions. Which requires more effort? If 
both the same put B.

Table 8.2c shows that the thirty physics items are reasonably well separated in diffi-
culty. The easiest is Item 1 with a difficulty estimate of -1 .91 logits. The hardest is Item 
15 with a difficulty estimate of +1.75 logits. The test standard deviation after adjusting for 
calibration error is .85, or 6.4 times the error root mean square.

The item fit statistics on the right of Table 8.2c have a mean of —.15 and a standard 
deviation of 1.88, and so, are somewhat more dispersed than modelled. Only one item (Item 
30, t = 3.54), however, has a fit statistic greater than +3.0. This is the last item on the test 
and, if time was a factor for some students, may have been spoiled by last minute 
guessing. Three items (7, 16 and 27) have fit statistics below -3 .0 .

To explore the fit of these items to the Dichotomous model, we have divided the 321 
students into six ability strata and calculated the proportion of students in each of these strata 
getting each item correct on the first try. These proportions and their corresponding model 
probabilities are plotted in Figure 8.2a for Item 7 with the most negative fit statistic, Item 30 
with the most positive fit statistic, and Item 3 with a fit statistic near zero. The text of these 
items is in Figure 8.2b.



158 RATING SCALE ANALYSIS

Figure 8.2a shows that the negative fit statistic for Item 7 is the result of too few low ability 
students and too many high ability students getting the item correct. Item 7 is based on the 
common laboratory demonstration that a block of iron “ gets bigger” when heated. By pro-
viding three alternatives which are greater than the correct answer, 40 newtons, and only one 
which is less, Item 7 invites students to associate an increase in size with an increase in 
weight. It seems that more low ability students were seduced by this distraction than is 
consistent with their performances on the other items. This causes Item 7 to look more difficult 
for the group as a whole than it would have had we considered only high-scoring students.

The misfit picture for Item 7 is typical of items which offer especially seductive distractors, 
require special knowledge, involve a common misconception, or for which the correct answer 
is particularly counter-intuitive. The problem with including items like Item 7 in a test dom-
inated by items which do not function the same way is that the misfitting items disorganize the 
definition of the variable. The relative location of Item 7 on the knowledge-of-physics variable 
marked out by the majority of these items is not fixed. It depends on the ability level of the 
students in the calibrating sample. When Item 7 is calibrated by high ability students, it is 
estimated to be relatively easy. But when it is calibrated by low ability students, some of 
whom fall for the common, but in this case irrelevant, experience that bigger is heavier, it is 
estimated to be relatively difficult. This ambiguity in the position of Item 7 among the other 
items prevents Item 7 from contributing to a sample-free (i.e., invariant) definition of this 
knowledge-of-physics variable. Since its relative position depends on the knowledge level of 
the students in the calibrating sample, we cannot give it a fixed position among the other items 
unless we first specify a particular level of student knowledge. But that defines a variable 
which is different in its content definition from sample to sample and even from person to 
person—hardly an acceptable situation.

The observed proportions of students answering Item 3 correctly on the first try are close 
to their model probabilities. This item fits the Dichotomous model well, and is included as 
background for the performance of misfitting Items 7 and 30.

The misfit picture for Item 30 at the bottom of Figure 8.2a shows that the positive fit 
statistic for this item is the result of too many low ability students and too few high ability 
students getting the item correct. The broken line drawn horizontally through this picture 
shows the probability of getting Item 30 correct by random guessing (.33). As Item 30 is the 
last item on the test, it seems likely that some responses to it are spoiled by last minute 
guessing. This hypothesis could be tested by moving Item 30 nearer to the beginning of the 
test or by increasing the time available for test completion.

Figure 8.2c shows the location of these thirty items on the knowledge-of-physics variable 
when performances are scored (001). The variable runs vertically up the middle of Figure 
8.2c. The most difficult items, defining high levels of knowledge, are towards the top. On 
the far right are the item scores (number of students getting each item correct). Easy Item 
1 was answered correctly by 280 students. Difficult Item 15 was answered correctly by only 
sixty-three. On the left is the distribution of ability estimates. We see that these items are 
well centered on this sample. Finally, on the far left are the scores made by these 321 stu-
dents. Three students had only five items correct on their first attempt. Two students had 
twenty-eight items correct.
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FIGURE 8.2c
M A r  U t  r a i M t S  V A R IA B L E

SCORING (001)

LOGIT STUDENT STUDENTS ITEMS ITEM LOGIT
SCALE SCORE (N = 321) (L = 30) SCORE SCALE

+ 3 — — +3
28 H IG H XX H A R D

A B IL IT Y ITE M S

27 x x x x

26 XX
+ 2 — -  +2

25 x x x x x x x

© 63

24 x x x x x x x x x x x

23 X X X X X X X X X X X X X X 30 85
2 29 92

22 x x x x x x x
+ 1 — 21 X X X X X X X X X X X X X X X 25 106 — + 1

13 113
20 x x x x x x x x x x x x x x x x x x x x x x 10 120

19 XXXXXXXXXXXXXXXXXXXXXXX
18 XXXXXXXXXXXXXXXXXXXXXXX 7 24 138

®  4 I7 143
17 x x x x x x x x x x x x x x x x x x x x x x x x

5 157
16 x x x x x x x x x x x x x x x x x x x x 8 169

0 — 15 x x x x x x x x x x x x x x x x x x 12 170 — 0

14 x x x x x x x x x x x x x x x x x x x x 21 184
13 XXXXXXXXXXXXXXXXXXXXXXXX 14 191

3 19 198
12 x x x x x x x x x x x x x x x x x x x x x 16 26 27 205
II x x x x x x x x x x x x x x x x x x 6 28 214

22 218
10 x x x x x x x x x x x x x 18 227

© 232
-1  — 9 x x x x x x x x x x V-/ ----- 1

8 x x x x x x x x x x II 245

7 x x x x x x x x
23 258

6 XX

5 XXX

- 2 - o 280
----- 2

LOW EA SY
A B IL IT Y IT E M S

Four of the items in Figure 8.2c are circled. These items, shown in Figure 8 .2d, mark out 
four successive levels of knowledge on this knowledge-of-physics variable. Item 1 is the 
easiest. To answer this item, a student need only know that the weight of two objects when 
combined is the sum of their individual weights. Item 1 defines the lowest level of knowledge 
on this variable.

Item 20 is somewhat more difficult. It requires the student to visualize the movement of 
the belt in the figure. Item 9 is still harder. To answer Item 9, a student must understand the 
relation between the minute and hour hand of a clock. Finally, the highest level of knowledge 
is defined by Item 15. To answer this item a student must understand the implications of a 
“ 3 amps” fuse and know which of the five appliances draws the most electricity.



  FIGURE 8 .2d ___
ITEMS 1 ,20 ,9  AND 15 

SCORING (001)

15. Which one of the following 
items would not work 
when fitted with a plug 
which looked like this 
inside?

A) Electric radio
B) Electric kettle
C) Electric clock
D) Electric blanket
E) Household electric 

light bulb

Which of these clocks is showing a possible time?

20.

1.

If wheel 1 is turned in the 
direction shown, which way 
will the belt move?

A bowl and water weigh 
200 newtons and a piece 
of wood weighs 100 newtons.

How much will the scales 
show when the wood floats 
in the water?

A) 100 newtons B) 200 newtons C) 300 newtons D) 400 newtons E) 500 newtons.
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8.2.2 Right in Two Tries (Oil)

The second dichotomous scoring scheme assigns a score of 1 for getting an item correct 
on either the first or second try, and a score of 0 if the correct answer is not given in two 
attempts. The results of this analysis are shown in Table 8 .2d.

Giving tw o  opportunities to provide the correct answer to an item makes the item eas-
ier. However, in our analyses we center item difficulties at zero during their calibration. The 
consequence is that instead of every item appearing easier in the (Oil) analysis as we know it 
must be, this greater easiness appears as a higher ability estimate for every person. Under 
the (001) scoring, the 321 students have a mean ability of .19 logits and a standard deviation 
of .85. Under the (011) scoring they have a mean ability of 1.45 logits and a standard deviation 
of .87. If we make the almost inarguable assumption that these data measure the same physics

_ J  TABLE 8 .2d L_ 
ITEM STATISTICS 

SCORING (Oil)

ITEM DIFFICULTY ERROR FIT FIT
NAM E d s MS SE /

/ -3 .2 4 .30 .99 .26 .05
2 .05 .12 .96 .04 - .9 9
3 -1 .2 3 .14 1.01 .07 .23
4 - .6 7 .13 .96 .05 - .8 2
5 - .6 8 .13 1.03 .05 .60
6 -1 .9 4 .17 .97 .12 - .1 7
7 - .0 3 .12 .87 .04 -3 .51
8 -1 .0 7 .14 .94 .07 - .8 6
9 - .4 5 .12 .87 .04 -3 .0 7

10 - .0 8 .12 1.09 .04 2.21
11 -1 .6 2 .16 .97 .10 - .3 0
12 - .9 3 .13 .95 .06 - .8 7
13 - .4 4 .12 1.00 .04 - .1 0
14 -1 .2 7 .14 1.00 .08 .07
15 .40 .12 1.19 .04 4.15
16 -1 .9 1 .17 .90 .12 - .8 1
17 -1 .2 1 .14 1.04 .07 .63
18 -2 .0 9 .18 .99 .13 - .0 2
19 -3 .3 3 .31 .97 .28 - .0 2
20 -1 .7 7 .17 .96 .11 - .3 7
21 -1 .5 0 .15 1.05 .09 .53
22 -2 .2 3 .19 1.02 .14 .16
23 -2 .6 6 .23 .95 .19 - .1 9
24 -1 .0 3 .14 1.05 .06 .83
25 - .5 9 .13 .99 .05 - .2 4
26 -2 .0 6 .18 .96 .13 - .2 7
27 -1 .7 4 .16 .95 .10 - .4 9
28 -2 .0 6 .18 .99 .13 - .0 6
29 - .3 6 .12 1.18 .04 4.10
30 - .0 6 .12 1.16 .04 3.83

Mean -1 .2 6 .16 1.00 .09 .14
S.D. .96 .05 .08 .06 1.67

Adjusted Test S.D. = .95 E rror RMS = .17 Item Separation =  .95/. 17 = 5.6 
Sample Reliability o f Item Separation = 5.62/(l +  5.62) = .97 
Sample Size = 321 Mean = .19 Unadjusted S.D. = .87
Adjusted Sample S.D. =  .70 Error RMS = .52 Person Separation = .70/.52 = 1.3
Test Reliability o f Person Separation =  1.32/(1 + 1.32) = .63
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ability whether scored (001), (Oil) or (012), then we can attribute this apparent difference in 
ability to the difference caused by scoring (Oil) rather than (001). Thus the effect of giving 
two opportunities to provide the correct answer is, on the average, to decrease the difficulty 
of an item by 1.45 - .  19 = 1.26 logits. In order to compare these two sets of difficulty estimates 
we have adjusted the person and item estimates from the (011) analysis by -  1.26 logits so that 
they are centered on the results of the (001) analysis.

The fit statistics on the right of Table 8 .2d show that, once again, Item 7 has the most 
negative fit value. Item 30, which had the most positive fit statistic in the (001) analysis, has 
a fit-t of +3.83. But now two other items, 15 and 29, also have large positive fit values. Item 
29 is the next to last item on the test, and so, if time was a factor, may also have suffered from 
some guessing. The poor fit of Item 15 is more puzzling. This item was shown in Figure 
8 .2d. The correct answer is alternative B—Electric kettle. Item 15 is estimated to be the 
most difficult item on the test by both the (001) and (011) analyses. However, while it fits 
reasonably well (t = .78) when scored (001), it fits poorly (t = 4.15) when scored (011).

To examine these misfits more closely, we have plotted the proportions of students suc-
ceeding on the first attempt and the proportions succeeding in two attempts for Items 3,30  and 
15 in Figure 8.2e. The lower curve in each picture describes the model probability of getting 
that item correct on the first try. The upper curve shows the model probability of getting the 
item correct in two tries. For Item 3 at the top of Figure 8.2e, the match between the observed 
proportions and model probabilities is good for both the (001) and (011) analyses. As a result, 
both fit statistics for this item are close to their expected value of zero.

For Item 30 in the middle of Figure 8.2e, the match between observation and expectation 
is poor for both analyses. As a result, both fit statistics for this item are Jarge and 
positive. The misfit picture for Item 15 is at the bottom of Figure 8.2e. The proportions of 
students getting this item correct on the first try match the model probabilities reasonably 
well. There is some tendency for low ability students to do better than expected on the first 
try and for high ability students to do worse than expected, and this has produced the fit statistic 
of .78. However, the upper (011) curve shows that when two attempts at Item 15 are allowed, 
this tendency becomes even more marked.

A surprising number of low ability students have succeeded on their second attempt at 
Item 15. For the lowest ability group we expect 6 percent of students to succeed on their first 
attempt, and 24 percent to succeed in two attempts. In other words, we expect (24-6)/ 
(100-6)=  19 percent of the students who missed on their first attempt to be successful on their 
second. Actually, (39 -  8)/( 100 -  8) = 34 percent of these low ability students who missed were 
successful on their second try. On the other hand, students in the highest ability group have 
been less successful than expected on their second attempt at Item 15. For these high ability 
students we expect (77 — 48)/( 100 — 48) = 55 percent of students who miss on their first attempt 
to be successful on their second. Actually, only (62-43)/(100-43) = 33 percent of these stu-
dents were successful.

The alternatives in Item 15 fall into two categories which are quite distinct, if recog-
nized. Only the electric kettle draws a heavy current. If a student sees this, then the item 
is easy. But if he does not, then his answer must necessarily deteriorate into a random 
guess. Thus a plausible explanation for the misfit of second attempts at Item 15 is that most 
students who failed this item on their first attempt guessed on their second. The pair of curves
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in Figure 8.2e show that while guessing is not a problem when performances on Item 15 are 
scored (001), it becomes a problem when two attempts at this item are allowed.

8.2.3 Comparing Dichotomous Analyses

Item Estimates. We have seen that the items on the knowledge-of-physics test are, on the 
average, 1.26 logits easier to answer in two attempts than in one. In Figure 8.2f we have 
plotted the difficulty estimates from the (001) and (011) analyses. The items have been ordered 
by sorting them on the means of their two difficulty estimates. Because it must always be 
harder to get an item right on the first try than to get that item right in two tries, the difficulty 
estimate from the (001) analysis is to the right of the difficulty estimate from the (011) analysis.

Figure 8.2f shows that most items become easier by about the same amount when a second 
attempt is allowed. There are three exceptions: Items 7,11 and 19. Items 7 and 11 are nearly 
as difficult in two attempts as they are in one. In contrast, Item 19 is much easier on the 
second attempt than on the first. These three items are shown in Figure 8.2g. Items 7 and 
11 are almost identical in content. Both require knowledge of the conservation of matter. On 
these two items, both of which offer five alternatives, a student is not much helped by the 
knowledge that he failed on his first attempt, and so, is almost as unlikely to succeed in two 
attempts as in one. It is interesting that Item 11, which follows Item 7 so closely in the test, 
is so much easier than Item 7. A likely explanation for this is that in Item 11 the block is 
weighed at the same temperature, and the alternatives in Item 11 are distributed symmetrically 
about the correct answer. In Item 7 there is not only a change in size due to heat, but also 
an inducement to be misled by this change because of the provision of three alternatives larger 
than 40 newtons.

When only one attempt at each item is allowed, Item 19 is estimated to be of average 
difficulty. Twelve other items are easier to get correct in one attempt than Item 19. However, 
no item is easier to get correct in two attempts than Item 19. The three alternatives of Item 
19 suggest why this happens. In order to reject alternative C a student need only note that 
C is to the right of the center of gravity, and so, will make the bus more likely to tip to the 
right. Alternatives A and B, on the other hand, are both to the left of the center of gravity. A 
correct choice between A and B requires noting that position A provides more leverage than 
position B. Thus, should B be incorrectly chosen, it is extremely easy to choose A over C.

Ability Estimates. The dichotomous analyses of the knowledge-of-physics test provide two 
difficulty estimates for each item and also two ability estimates for each student. These two 
ability estimates are plotted against each other in Figure 8.2h. Persons on the identity line 
have identical estimates from the two analyses.

Two students 201 and 211 are marked in Figure 8.2h. These students make almost identical 
scores under the (001) scoring. Person 201 has seventeen items correct in one attempt. Person 
211 has eighteen items correct. But they have quite different ability estimates under the (011) 
scoring. The reason for this can be seen in Table 8.2e. Student 201 gave the correct answer 
to seventeen items on his first try and was able to give the answers to all but one of the remaining 
thirteen items on his second. This student is surprisingly successful at identifying correct 
answers on his second attempts. When performances are scored (011), he makes a score of 
29, and so, is at the top of Figure 8.2h.
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FIGURE 8.2g ___
11 tM 5  / ,  11 A N D  19

7. A block of iron weighs 40 newtons at room temperature. When it is heated until it is red hot it gets 
bigger. How much will it weight when red hot?

A) 39 newtons B) 40 newtons C) 40.5 newtons D) 41 newtons
E) 42 newtons

11.

Heat

4 0  n e w to n s

A block of pure iron weighs 40 newtons at 20°C. It is heated to 620°C in vacuum and then allowed to 
cool. If it expanded when being heated, how much does it weigh when cool?

A) 38 newtons B) 39 newtons C) 40 newtons 
D) 41 newtons E) 42 newtons.

19. This bus appears to be very nearly 
falling over. Where on the bus 
should a large man with a heavy 
suitcase sit if he does not want 
the bus to fall over?

Student 211, on the other hand, gave the correct answer to eighteen items on his first 
attempt, and so, has a slightly higher ability estimate than Student 201 under (001) scoring. But 
on his second attempt, Student 211 was successful on only two of the twelve items he missed 
on his first try. This student is surprisingly unsuccessful in identifying correct answers on his 
second attempts.

Figure 8.2h and Table 8.2e raise an interesting question: Who has more physics knowledge— 
Student 201 who can provide the answer to all but one of these items in two attempts, or 
Student 211 who can provide the answer to more items on his first attempt? The records of
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these two students resemble records we encountered in our analyses of the attitude-to-science 
and attitude-to-drugs questionnaires where we found some persons with unusual tendencies to 
respond in the middle category and others with unusual tendencies to give extreme responses.

In attitude questionnaires, this observation is usually attributed to an interaction between 
the “ ambiguity” of the middle response category and the assertiveness of the individual. Here 
we see the same response pattern in a different context. This kind of difference among in-
dividuals is possible whenever more than two categories of response are possible. The im-
plications for measurement, however, are the same. The different success rates of Persons 
201 and 211 on their second attempts represent a difference among individuals which we have 
not modelled. This difference interferes with our attempt to represent the abilities of Persons 
201 and 211 as two points on the same line of increasing knowledge.
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________________  TABLE 8.2e________________
PERFORMANCES OF STUDENTS 201 AND 211

STUDENT 201

Items in Serial Order Score Ability

1st Try 
2nd Try 
3rd Try

2 2 2 2 2  2 2  2 2 2 2 2 2 2 2  2 2  
1 1 1  1 1 1  I I  1 1  1 1

0

17
29

.30
2.48

STUDENT 211

Items in Serial Order Score Ability

1st Try 
2nd Try 
3rd Try

2 2 2 2 2  2 2 2  2 2  2 2 2 2 2 2  2 2
1 1

0 0  0 0 0  0 0 0 0

18
20

.46
-.48

8.3 ANALYZING PERFORMANCES TRICHOTOMOUSLY (012)

In Section 8.2 we saw how, by analyzing the knowledge-of-physics data with different 
dichotomous scoring schemes, we were able to obtain two difficulty estimates for each item— 
the difficulty of succeeding in one attempt and the difficulty of succeeding in two attempts. We 
saw that some items like Items 7 and 11 are not much easier in two attempts than in one, while 
others like Item 19 become much easier when a second attempt is allowed.

One problem with using separate dichotomous analyses of ordered category data is that 
as the number of response alternatives increases above three, the number of ways to dichotomize 
the data, and hence the number of secondary analyses needed to complete all possibilities, 
increases rapidly. A dichotomous approach becomes impractical for more than three or four 
response alternatives.

A second problem with separate dichotomous analyses is that we are left with two or more 
ability estimates for each person, none of which is based on all the available information about 
that person’s performance. Student 201' s score of 17 in the (001) analysis, for example, ignores 
the fact that he was able to answer another twelve items on his second attempt. Student 211'% 
score of 20 in the (Oil) analysis ignores the fact that he had eighteen of these twenty items 
correct on his first try.

We will now use the Partial Credit model to analyze the knowledge-of-physics data scored 
(012). The advantages of this approach are that it requires only one analysis and provides 
only one ability estimate for each student based on all available information about that student’s 
performance. We will see that the partial credit approach is capable of exposing most, if not 
all, of the data features which we discovered in our detailed comparisons of the two dichotomous 
analyses.

8.3.1 Estimating Item Difficulties

The item statistics from the partial credit analysis of the knowledge-of-physics data are
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_ J  TABLE 8.3a L_ 
ITEM STATISTICS 

SCORING (012)

ITEM
NAME

STEP ESTIMATES 
4/i da

ERRORS
4zi *a

FIT
MS SE

FIT
t,

1 - .6 4 -1 .75 .30 .17 1.01 .16 .10
2 1.10 .53 .12 .13 .99 .05 - .1 5
J .62 - .7 8 .14 .12 1.01 .06 .20
4 .68 -.01 .13 .12 .92 .05 -1 .64
5 .84 - .3 0 .13 .12 1.09 .05 1.81
6 - .2 2 -.61 .18 .12 1.03 .08 .42
7 1.76 - .6 6 .12 .12 .84 .05 -3 .50
8 .41 - .2 4 .14 .12 .95 .06 - .9 9
9 1.06 - .2 8 .12 .12 .85 .05 -3 .14

10 1.29 - .0 4 .12 .13 1.15 .05 2.89
11 1.02 -1 .75 .16 .14 .94 .08 - .6 6
12 .64 - .3 7 .13 .12 .99 .05 -.21
13 .66 .43 .12 .13 1.04 .05 .85
14 .40 - .5 4 .14 .12 1.06 .06 1.00
15 1.24 1.00 .12 .15 1.16 .06 2.41
16 - .3 0 - .4 6 .17 .12 .86 .07 -1 .98
17 - .0 2 .26 .14 .12 1.04 .06 .70
18 - .2 4 -.8 1 .19 .13 .93 .09 - .8 0
19 -1 .97 - .0 5 .31 .12 .95 .08 - .6 6
20 .34 -1.13 .17 .13 .92 .08 -1 .00
21 - .0 2 - .2 6 .15 .12 1.09 .06 1.37
22 - .5 4 - .5 7 .19 .12 1.02 .08 .29
23 - .4 3 -1 .29 .23 .15 .91 .12 - .7 8
24 .14 .31 .14 .12 1.01 .05 .17
25 .41 .66 .12 .13 .99 .05 -.1 4
26 - .4 5 - .4 5 .18 .12 .95 .08 -.6 9
27 - .0 8 -.5 3 .16 .12 .88 .07 -1 .79
28 - .3 7 - .5 8 .18 .12 .96 .08 - .5 2
29 .57 .79 .12 .13 1.19 .05 3.25
30 .87 .78 .12 .14 1.28 .06 4.61

Mean
S.D.

.00

.78
.14
.04

1.00
.10

.07

.02
.05

1.77
Adjusted Test S.D. =  .76 Error RMS = .15 Step Separation = .76/. 15 =  5.1 
Sample Reliability of Step Separation = 5.12/( 1 + 5 .12) = .96 
Sample Size = 321 Mean = .53 Unadjusted S.D. = .54
Adjusted Sample S.D. = .47 Error RMS = .26 Person Separation = .54/.47 = 1.8
Test Reliability of Person Separation = 1.82/( 1 + 1.82) = .76

shown in Table 8.3a. This analysis provides two step estimates </l7 and </# for each item. On 
the far right of Table 8.3a the fit of each item to the Partial Credit model is summarized in an 
item fit statistic f,.

The item step estimates in Table 8.3a define three category probability curves for each item 
in the knowledge-of-physics test. The probability curves for Item I are shown at the top of 
Figure 8.3a. These curves describe the estimated probabilities of succeeding on the first, 
second and third tries at Item 1. The item step estimates dit = -  .64 and da = -  1.75 are located 
at the intersections of these curves.

In our dichotomous analyses of performances on Item 1 we considered first the difficulty 
of getting Item 1 correct in one try, and then the difficulty of getting Item I correct in two 
tries. This pair of difficulties can also be inferred from the results of the (012) analysis. To 
show how this is done, we have redrawn the category ‘2’ curve (Right-First-Try) at the bottom 
of Figure 8.3a. The p = 0.5 intercept of this ogive provides an estimate ga of the difficulty of 
getting Item 1 correct on th e ir s /  try. To obtain a second ogive which describes the probability
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of succeeding on either the first or second try at Item I we have summed the curves for 
categories ‘1’ and ‘2’. This is shown in the middle of Figure 8.3a. The resulting cumulative 
ogive is also shown at the bottom of Figure 8.3a. Its p = 0.5 intercept provides an estimate 
gn of the difficulty of getting Item 1 correct in two tries which we can compare with our estimate 
from the (Oil) analysis.

Figure 8.3a brings out a fundamental feature of the Rasch approach to analyzing ordered 
response category data. Thurstone began his approach to analyzing rating scale data with the 
bottom picture in Figure 8.3a and modelled the probability of scoring k or better on item i in 
terms of the locations of these cumulative ogives. This is also the approach taken by Samejima 
(1969). Her Graded Response model is written in terms of the ordered item parameters defined 
by the p = 0.5 intercepts at the bottom of Figure 8.3a. When the model is written in these 
parameters rather than in item steps, however, the person and item parameters in the model 
cannot be separated. This means that the Thurstone-Samejima Graded Response model does 
not belong to the class of models developed in Chapter 3 which enable objective measurement.

The Partial Credit model begins with a simple logistic expression for the probability of 
completing each step in an item, that is, the probability of scoring 1 rather than 0 , 2 rather than 
1, and so on. It is these “ step” difficulties which then define the intersections of the response 
category probability curves shown at the top of Figure 8.3a. While this approach does not 
model the g statistics directly, the cumulative ogives shown at the bottom of Figure 8.3a are 
easy to construct from the curves at the top. The g statistics can then be found at the p = 0.5 
intercept of these cumulative ogives. Item estimates gu and gi2 have been obtained in this 
way for each of the thirty physics items. These estimates are plotted in Figure 8.3b where the 
items are sorted by the mean of git and gi2.

The item estimates displayed in Figure 8.3b are almost identical in pattern to the corre-
sponding estimates obtained from the separate dichotomous analyses of these data (Figure 
8.2f). The equivalence of Figures 8.2f and 8.3b shows that the (012) analysis of these data 
provides the same definition of this knowledge-of-physics variable as the two dichotomous 
analyses. The thirty items are ordered identically in Figures 8.2f and 8.3b, and in both pictures 
Items 11, 7 and 19 are distinguished by their unusual difficulty patterns.

8.3.2 Analyzing Item Fit

We have established that the item information obtained from two separate dichotomous 
analyses of the knowledge-of-physics data can be recovered from an analysis of the (012) 
data. Our next job is to analyze the fit of these thirty items to the Partial Credit model.

To facilitate the comparison of item fits in the (001), (011) and (012) analyses, we have 
plotted all ninety fit statistics in Figure 8.3c. The item with the most negative misfit in all 
three analyses is Item 7 on the left of Figure 8.3c. The other item with a consistently negative 
misfit is Item 9. The items with the most positive misfit on the right of Figure 8.3c are Items 
29 and 30, the last two items on the test. We have marked the shift for Item 15, from fitting 
reasonably well in the (001) analysis, to fitting poorly in the (011) analysis. Item 29 behaves 
in the same way.

Figure 8.3d shows that the item fits from the dichotomous analyses appear in the (012) 
analysis as their average. Items 27, 16 and 4, for example, have fit values near - 3  when
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_________  FIGURE 8.3d _________
RELATION BETWEEN (012) FIT 

AND MEAN FIT OF (001) AND (Oil)

Mean Fit T (001) and (Oil)

scored (001), near - 1  when scored (011), and near - 2  when scored (012). Item 15, which 
has fit values of .8 and 4.2 when scored dichotomously, has a fit of 2.5 when scored (012). All 
of the items tagged for further investigation in the dichotomous analyses turn up in the partial 
credit analysis.

To investigate the misfit of Items 7 (most negative misfit value) and 30 (most positive misfit 
value), we have plotted the (012) analysis probability curves for Items 7, 3 and 30 in Figure 
8.3e. Only the curves for performance levels 0 and 2 are shown. We have also plotted the 
observed proportions of students scoring 0 and 2 for six ability strata. On Item 7, the proportion 
of low ability students scoring 0 is higher, and the proportion of high ability students scoring 
0 is lower than expected. At the same time, the proportion of low ability students scoring 2 
on Item 7 is lower, and the proportion of high ability students scoring 2 is higher than ex-
pected. As a result, Item 7 could be described as “ too discriminating’’. The relative difficulty 
of Item 7 shifts down as ability increases. This ability dependent shift in item difficulty spoils
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the invariance of item calibration. The -  3.50 fit of Item 7 tells us that the way Item 7 measures 
knowledge of physics is not the same as the way a knowledge-of-physics variable is marked 
out by the twenty-four items which fit together to provide its general definition.

The observed proportions for Item 3 match the model probabilities quite well. This has 
produced a fit close to the expected value of zero.

On Item 30, low ability students score higher than expected and high ability students score 
lower. Item 30 could be described as “ poorly discriminating". As we have noted, a plausible 
explanation for the misfits of Items 30 and 29, the last two items on the test, is the presence 
of some last minute guessing by students pressed for time.

Figures 8.3b, 8.3c, 8.3d and 8.3e show that everything we were able to discover about the 
functioning of these knowledge-of-physics items from separate dichotomous analyses is also 
exposed by a partial credit analysis of the complete (012) data matrix. The cumulative item 
difficulty estimates calculated from the (012) analysis (Figure 8.3b) are equivalent to the esti-
mates from the dichotomous analyses, and the items identified as misfitting in the dichotomous 
analyses are also identified as misfitting the Partial Credit model.

8.3.3 Estimating Abilities

The partial credit analysis of these knowledge-of-physics data provides one ability estimate 
for each student. This estimate is based on the total test score, which, in this sample, takes 
values between 18 and 57. The distribution of ability estimates from the (012) analysis has a 
mean of .53 logits and a standard deviation of .47 after adjusting for measurement error.

One reason for using an Answer-Until-Correct format is to increase the amount of infor-
mation available from a test, and so, to improve the precision of measurement. The sample 
standard deviation from the (001) analysis is .74, and the error root mean square is .43. This 
gives a separation index of .74/.43 = 1.74. For the (012) analysis, the sample standard deviation 
and error root mean square are .47 and .26, giving a separation of .47/.26= 1.77.

While the person separation index for the (012) analysis is larger than for the (001) analysis, 
indicating that better separation of these students has been achieved, the overall improvement 
for the whole sample is small. This is because there are only a few students in this group who 
are of sufficiently low ability to benefit from a second attempt at these items. In order to 
compare the information gathering power of (001) and (012) scoring we must bring the two 
scorings onto the same scale. Then we can compare their measurement errors and see how 
the ratio of these error variances varies with ability level.

We will do this by assuming that the physics abilities expressed by these 321 students are 
the same no matter how their performances are scored. In that case, scorings (001) and (012) 
should produce the same sample mean and standard deviation (adjusted for error). We can 
apply this idea either by transforming both sets of statistics to meet a sample mean of zero and 
standard deviation of one, or by transforming one of the scorings to the scale of the other. The 
equations for transforming the results of the (012) scoring onto the scale of the (001) scoring
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are

b"
s"

1.586' -  0.65 
1.58s'

where b' and s ' are the measure and its error given by the (012) analysis, and b" and s" are 
these estimates expressed on the scale laid out by the (001) analysis.

Figure 8.3f shows how measurement error varies with ability for the (001) and (012) anal-
yses. At abilities above the sample mean, M, the measurement errors s and s" are very 
similar. At abilities below the sample mean, measurement error is smaller for (012) scoring 
than for (001) scoring. The relative efficiency of (012) over (001) scoring, E  = (s/s")2, is plotted 
below the measurement error curves. Two standard deviations below the sample mean, 
marked W, the relative efficiency of (012) scoring is 1.5. This means that for students at this 
ability level, fifteen items scored (001) are needed to obtain the information provided by ten 
items scored (012).

8.3.4 Diagnosing Person Fit

Table 8.3b shows the fit statistics for six of the 321 students. Students 22 and 26 are 
included because they have the largest positive misfits in the (012) analysis. These two low-

FIGURE 8.3f
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______________  TABLE 8.3b_______________
ABILITY ESTIMATES AND FIT STATISTICS 

FOR SIX STUDENTS

STUDENT RIGHT
SCORE SECOND ABILITY FIT

001 011 012 TRY 001 011' Mean2 0123 001 011 012
22 14 22 36 8 -.1 5 -.0 9 -.1 2 -.13 2.94 1.71 2.60
26 11 21 32 10 -.62 - .2 9 -.4 6 -.4 8 2.79 1.97 2.35

211 18 20 38 2 .46 -.48 -.01 .05 -.41 -.2 0 1.13
243 15 22 37 7 .00 -.0 9 -.0 4 -.05 .10 -.33 - .0 8

201 17 29 46 12 .30 2.48 1.39 .84 -.9 7 .14 -2.58
237 21 26 47 5 .95 .89 .92 .95 .55 .25 .60

1 Transformed to (001) scale using b' = 1.066- 1.36 where 1.06=.74/.70 and -  1.36 = 0 .1 9 -(1.06)( 1.46)
2 Mean of (001) and (Oil) ability estimates
3 Transformed to (001) scale using b' = 1.586-0.65 where 1.58=.74/.47 and -0.65 = 0 .19-(1.58)(0.53)

The formula for common person scale equating is

b' = (s'ls)b + [m' — (s'ls)m] 

in which m and m' are sample means and s and s' are sample standard deviations adjusted for measurement error.

scoring students had a surprising number of difficult items correct on their first try, and so, had 
large positive misfits in the (001) analysis as well. A likely explanation is that their surprising 
successes were due to guessing.

Student 211 was identified in Figure 8.2h because he was surprisingly unsuccessful on his 
second attempts—only two correct out of twelve second tries. This gave him rather different 
ability estimates in the (001) and (011) analyses. Nevertheless, his response pattern is suffi-
ciently consistent with the difficulty order of the thirty items to make his fit statistics under the 
dichotomous analyses ( — .4 and — .2) close to their expected value of zero. Only the partial 
credit (012) analysis brings out his slightly unusual behavior by marking him with a misfit of 
1.1.

Student 243 who had a similar (012) score to Student 211 was successful on seven of his 
second attempts. This gave him comparable ability estimates under the (001) and (011) analyses 
and a good fit in all three analyses.

Student 201 was identified in Figure 8.2h as surprisingly successful on his second attempts— 
twelve correct out of thirteen second tries. This gave him a high score of 29 under the (011) 
analysis and resulted in very different ability estimates from the (001) and (011) analyses. While 
Student 201' s response record fits reasonably well when analyzed dichotomously, the (012) 
analysis responds to his surprising number of successful second attempts with a misfit of -  2.58, 
the most negative person misfit in the partial credit analysis.

Student 237 who had a (012) score similar to Student 201 was successful on five of his 
second attempts. This gave him about the same ability estimates under the (001) and (011) 
analyses and a good fit in all three analyses.
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By comparing dichotomous and partial credit analyses of the same data, we have seen that 
the information obtained by applying the Partial Credit model encompasses the results of 
separate dichotomous analyses. A single partial credit analysis provides the same definition 
of the knowledge-of-physics variable as the (001) and (Oil) analyses combined. When each 
item’s pair of difficulty estimates are averaged, and the thirty items are sorted by these averages, 
the partial credit and dichotomous analyses provide identical item orderings. Items 7 and 11 
are identified as not much easier in two attempts than in one. Item 19 is identified as much 
easier when a second attempt is allowed.

The partial credit and dichotomous approaches also yield equivalent information about the 
extent to which these thirty items define a single knowledge-of-physics variable. Items 7 and 
9 are identified as “ too discriminating” to be positioned unambiguously among the twenty-four 
best-fitting items. Where these two items stand among the others depends upon the abilities 
of the students in the calibrating sample. Items 29 and 30, the last items in the test, were also 
identified as misfitting by both models. It seems likely that last minute guessing spoiled per-
formances on these items.

A disadvantage of the dichotomous approach to multiple response category data is that it 
requires several separate analyses which must then be compared. A single partial credit 
analysis yields the same information about item position and fit. An even bigger disadvantage 
of the dichotomous approach is that it yields several estimates of ability for each person, none 
of which encompasses their full performance. A partial credit analysis uses all the available 
information to provide one ability estimate for each person. Further, by testing the fit of 
individuals to the Partial Credit model it is possible to identify not only persons whose per-
formances are inconsistent with the difficulty ordering of the items, but also persons who are 
surprisingly successful or surprisingly unsuccessful on their second attempts.

Finally, the comparison of measurement errors shows that while dichotomous (001) and 
answer-until-correct (012) scoring do about equally well among those of high ability who usually 
succeed on their first try, a partial credit analysis of answer-until-correct scoring is slightly 
more precise among those of average ability and far more precise among the least able.

8.4 DISCUSSION



9 PERFORMANCE OF INFANTS

In this chapter we use our measurement method to analyze performances on some simple 
cognitive and psychomotor tasks constructed to identify learning problems among prekinder-
garten children. This screening test (d i a l , Developmental Indicators for the Assessment of 
Learning) was developed by Mardell and Goldenberg (1972, 1975). The DIAL users’ manual 
provides a detailed description of four performance levels for each item. In Item 2, for ex-
ample, each child is asked to copy a three-block tower, a three-block bridge and a six-block 
pyramid, in that order. Each new structure is attempted only after the preceding ones have 
been completed. The four levels of performance on Item 2 are shown in Figure 9.0.

The first step in Item 2 is to score a 1 rather than a 0 by completing a three-block tower. If 
the tower is completed, the child may try a three-block bridge in an attempt to score a 2 rather 
than a 1. If the child completes both the tower and the bridge, then he may try a six-block 
pyramid in an attempt to score a 3 rather than a 2.

We will use the Partial Credit model to analyze performances on fourteen items from the 
“ Fine Motor”  and “ Cognitive” sections of the d i a l  test. Our objective will be to construct 
one ability variable from these items and to measure the abilities of prekindergarten children 
along this variable. The data are from five-hundred children between two-and-a-half and five- 
and-a-half years of age observed in Northbrook, Illinois in 1978 under the supervision of Mardell 
and Goldenberg.* '

9.1 DEFINING THE ABILITY VARIABLE

The partial credit analysis of these data provides three step estimates </,/, da and da for 
each item on the DIAL test. These estimates, which govern the probability of scoring 1 rather 
than 0, 2 rather than 1, and 3 rather than 2 on each item, are shown in Table 9.1a together with 
their calibration errors and a statistic summarizing the fit of each item to the Partial Credit 
model.

FIGURE 9.0
ITEM 2: BU1LD1NU BLUCKS

■ ■
■ ■  ■

■ ■  ■ ■  ■  ■
0 1 2 3

* We are grateful to Carol Mardell and Dorothea Goldenberg for the opportunity to study these data.
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________ TABLE 9.1a________
ITEM STATISTICS FOR DIAL 

SCREENING TEST

ITEM s t e p  e s t i m a t e s  e s t i m a t i o n  e r r o r s  f i t
NAME dn_________da________ da sn_________Sa_________sn t,

1 -1 .33 -1 .28 -1.03
" 11 
.55 .35

“13
.18 -0.21

2 - .91 -.9 3 1.29 .35 .21 .11 -2.02
3 - .91 .98 .21 .26 .17 .13 .48
4 -2 .25 1.21 3.47 .35 .12 .12 -4.81
5 -1 .34 1.72 3.40 .24 .15 .12 -5 .28
6 1.81 1.07 1.46 .15 .15 .12 3.79
7 .32 .86 2.21 .18 .14 .11 1.71
8 .58 .63 - .4 9 .22 .19 .15 -.3 7
9 -1 .76 - .0 9 .19 .41 .20 .13 1.38

10 -2 .50 - .8 5 2.28 .55 .19 .11 -1.27
11 -1 .49 -.8 3 2.66 .38 .18 .11 3.33
12 -2 .20 -1 .33 -.4 8 .67 .32 .15 1.67
13 -2 .25 -1 .80 1.66 .65 .27 .11 -.6 0
14 - .5 4 -2.11 .74 .43 .30 .12 .88

Mean 0.00 .24 -.1 0
S.D. 1.61 .15 2.65

Adjusted Test S.D. = 1.58 Error RMS = .28 Step Separation = 1.58/.28 = 5.5
Sample Reliability of Step Separation = 5.52/(l +5.52) = .97
Sample Size = 500 Mean = 2.21 Unadjusted S.D. = 1.43 Adjusted S.D. = 1.30
Error RMS = .60 Person Separation = 1.30/.60 = 2.2
Test Reliability of Person Separation = 2.22/(l+ 2 .2 2) = .82

FIGURE 9.1a 
RESPONSE CATEGORY PROBABILITY CURVES 

FOR ITEM 2: BUILDING BLOCKS
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The three step estimates for each item define a unique set of probability curves for the 
four performance levels in that item. Figure 9.1a shows the curves defined by the three step 
estimates for Item 2 “ Building Blocks.” The estimates d2l = -  .91, d22 = -  .93 and d23 = 1.29 
are located at the intersections of successive category probability curves. These curves show 
that for children with estimates below -  .92 logits, the most probable score on Item 2 is a 
0. Children with ability estimates below -  .92 logits will most likely not even complete the 
three-block tower. Children with estimates between - .9 2  logits and 1.29 logits will most 
probably complete both the three-block tower and the three-block bridge to score 2 on Item 
2, and children with ability estimates greater than 1.29 logits will most probably complete all 
three structures to score 3. We have used the estimated probability curves for each of these 
fourteen items to construct Figure 9.1b.

Figure 9. lb shows regions of “ most probable score” for each of the fourteen items. The 
most probable score on Item 4 “ Copying Shapes,” for example, is 0 for children with ability 
estimates to the left of the ' 1* in the top row of this picture (i.e., for children with estimates 
below d42= -2 .25  logits), 1 for children with ability estimates between ‘1’ and ‘2’ (d42 = 1.21 
logits), 2 for children with estimates between ‘2’ and ‘3’ (d43 = 3.47 logits), and 3 for children 
with ability estimates to the right of ‘3’.

The fourteen items have been sorted so that the item easiest to complete for a score of 3 
(Item 1) is at the bottom of Figure 9.1b, and the item hardest to complete (Item 4) is at the 
top. The estimated abilities of the five-hundred children are shown at the bottom of Figure 
9.1b. Most of these items are easy for this group of children to complete. A child one 
standard deviation, marked S, below the sample mean, for example, is expected to complete 
the six easiest-to-complete items at the bottom of Figure 9.1b, but to score less than the 
maximum score of 3 on the other eight items. A child at the sample mean M  is expected to 
complete all but the five hardest-to-complete items, and a child one standard deviation S above 
the mean is expected to complete all fourteen items.

Figure 9.1b shows that some items like 4, 5, 11 and 10 cover a wide range of the ability 
variable defined by these items. It is relatively easy to complete the first step in each of these 
four items to score 1. It is more difficult to complete the second step to score 2, and still more 
difficult to complete the third step to score 3. As a result, while low ability children have a 
good chance of succeeding on the first step in these items and scoring 1, only high ability 
children are likely to complete Items 4, 5, 11 and 10 to make a score of 3.

Other items cover a much smaller range of the variable. In Item 1, for example, there 
is a very small ability range in which a 1 or a 2 is the most probable score. Children with 
ability estimates below — 1.33 logits will most probably score 0 on Item /,  while children with 
estimates above —1.03 logits will most probably complete all three steps and score 3.

These differences among items, and hence the ability variable that they define, can be 
understood by examining the details of the scoring schemes for individual items. We will study 
the role the item subtasks play in defining this ability variable by examining the scoring schemes 
for Items 2, 4, 10, 1 and 8.
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9.1.1 Examining Item Subtasks

Item 2'. “Building Blocks”. The three subtasks in Item 2 are shown in Figure 9.0. The category 
probability curves for Item 2 in Figure 9.1a show that the completion of only the first step in 
this item is a relatively improbable event. Even for children at - .9 2  logits, near the peak of 
the 1 curve, the probability of completing only one step is less than one third. This is because 
the first two steps in Item 2 are about equally difficult. A child with a good chance of completing 
the three-block tower also has a good chance of completing the three block bridge. Because 
the third step is significantly more difficult than the first two, however, it takes significantly 
more ability to succeed on this third step. The combined effect of an easy second step and 
a hard third step makes a score of 0 or 2 more likely than a score of 1 on Item 2. Figure 9.1a 
shows that the first two step estimates and are well to the left of the sample mean M, 
indicating that the first two steps in Item 2 are relatively easy for these children.

Item 4: “Copying Shapes” In Item 4 each child is shown four shapes: a circle, a cross, a 
square and a triangle, and asked to copy each shape with a pencil. Three points can be earned 
on each shape, giving a maximum of twelve points for the item. The four levels of performance 
are

Performance Level 
0 1 2  3

+ 1 point + 5 points + 4 points 
Total Points Needed 0  * 1 ---------------- > 6  * 10

The d i a l  instructions for scoring performances on each shape are shown in Figure ?. 1c. A 
child who makes “ no response" to a shape earns no points. One point is earned for simply 
marking the paper (e.g., scribbling). Two points are earned for a rough, but recognizable copy 
of the shape, and three points are earned for an accurate copy.

When the points earned on all four shapes are summed and converted to scores of 0 to 3, 
we see that to score 1 on Item 4 a child needs only one point. This can be earned by marking 
the paper once in response to any of the four shapes. This is an extremely easy first step, and 
should be failed only by children who do not cooperate. To score 2 on Item 4 a child must 
earn at least six points. This requires three points (accuracy) on at least one shape, or two 
points (recognizability) on at least two shapes, and so, defines a much higher level of functioning 
than scribbling. Finally, to score 3 on Item 4 a child must earn at least ten points, e.g., three 
points (accuracy) on two shapes and two points (recognizability) on two shapes. This requires 
a relatively high degree of coordination, and defines a rather high level of functioning.

The probability curves for Item 4 are shown in Figure 9. Id. These curves are different 
from the curves for Item 2 (Figure 9.1a) in that there is now a wide range of abilities for which 
1 is the most probable score. In Item 2 the first two steps are about equally easy, and so, the 
probability of completing only the first step in Item 2 is never high. In Item 4, however, the 
first step is very easy and the second step is relatively hard. For children with estimates 
between d4/ = -2 .25 logits and d « =  + 1.21 logits, the most probable outcome on Item 4 is the 
completion of only the first step.

We can use Items 2 and 4 to begin to lay out the variable we are trying to construct. In 
Figure 9. le we summarize what we have learned about this variable from Items 2 and 4. The
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___  1 FIGURE 9.1c
SCORING INSTRUCTIONS FOR 

ITEM 4

STIMULUS
SHAPE 0

POINTS EARNED 
1 2

no response scribble, no 
resemblance 
to circle

6

lack of closure, 
much overlap, 
more than ■/» of 
figure distorted

closure, no more 
than V*” overlap 
Vi figure round

o
o

no response 1 or 2 lines, 
no crossing, 
curved lines, 
scribble, no 
resemblance 
to cross

K
i

(

2 lines cross 
at quarter point 
or less, 1 line 
twice the length 
of the other, 
cross in rotated 
plane

f f

2 lines, clear 
crossing, both 
lines roughly 
straight, no 
rotated plane

+ +
no response more or less 

than 4 sides, 
curved lines, 
scribble, no 
resemblance 
to square

d"

4 sides, lack of 
closure unequal 
or curved lines

D'aI---1

4 sides, full 
closure, 
relatively equal 
straight lines

□ a 0
no response more or less 

than 3 sides, 
curved lines, 
scribble, no 
resemblance to 
triangle

3 sides rotated 
plane, curved 
lines

3 sides, full 
closure, 
relatively 
straight lines

A

step estimates for these two items divide the ability continuum into five regions. Children with 
estimates above —2.25 logits, but below - .9 2  logits, will most probably score 1 on Item 4 
(make some attempt at copying at least one shape), but 0 on Item 2 (fail simple three block 
structures). Children with abilities between - .9 2  logits and 1.21 logits will most probably 
score 2 on Item 2 (build simple three-block structures like the tower and the bridge). Children



________________ FIGURE 9. Id ________________
RESPONSE CATEGORY PROBABILITY CURVES
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with estimates between 1.21 logits and 3.47 logits will most probably score 2 on Item 4 (draw 
rough but recognizable copies of simple shapes), and 3 on Item 2 (build six-block structures 
like the pyramid), while children with estimates above 3.47 logits will most probably score 3 
on both items (make accurate copies of simple shapes).

Item 10: “Counting”. In Item 10 each child is asked to count to eight and then to take one, 
three and five blocks from a pile of blocks. The highest number the child counts to (maximum 
= 8), and the highest number of blocks taken from the pile (maximum = 5) are added to give 
a maximum of thirteen points on Item 10. The four performance levels are

Performance Level 
0 1 2  3

+ 1 point + 4 points + 8 points 
Total Points Needed 0 ------------------* 1 ------------------> 5 ---------------- * 13

To score 1 on Item 10 a child needs only one point. This can be earned either by saying 
the word “ one” , or by taking one block from the pile when asked. This should be a very easy 
first step. The second step is to earn four more points to make a total of five. A child can 
score 2 on Item 10 by counting to “ four” and taking one block from the pile. The third step 
is to earn all eight remaining points. A child scores 3 on Item 10 by counting to “ eight” and 
taking one, three and five blocks from the pile when asked.

The estim ated difficulties of the steps in Item 10 are dw.i= -2 .50 , dio,2 — —.85 and 
dio,3 = 2.28. The category probability curves they define are given in Figure 9. If. These 
curves show that children with ability estimates greater than -  2.50 logits will most probably 
score 1 on Item 10. Children with estimates greater than -  .85 logits will most probably score 
2 , and children with estimates greater than 2.28 logits will most probably score 3.

Once again we see that because the first step in Item 10 is so easy and the third step so 
hard, there is a wide range of abilities for which a 1 or a 2 is the most probable score. However, 
the first two steps in Item 10 are very easy for these children. Only the harder third step with 
its difficulty near the sample mean is effective in differentiating among the abilities of this group 
of children.

Item 1: “Matching Shapes”. In Item 1 each child is provided with the ten shapes

O+A
and asked to match each shape to a shape on a design. The shapes are handed to the child 
in the above order, and the item ends if the child fails to match three consecutive shapes.

The four levels of performance are

Performance Level 
1 2

Total Number of 
Shapes Matched

+ 1 shape + 3 shapes + 4 shapes 
0  > 1  > 4  » 8
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________________  FIGURE 9 .If ________________
RESPONSE CATEGORY PROBABILITY CURVES 

FOR ITEM 10: COUNTING

Ability

The first step is completed as soon as the child matches one shape. The second step is to 
match another three shapes, and the third step is to match four more shapes to make a total 
of at least eight.

The step estimates for Item 1 are dn = -  1.33, dt2= - 1.28 and d,3= -  1.03. When ex-
amined in the light of their standard errors, these three estimates are not significantly different 
from each other. This implies that a child with a good chance of completing the first step in 
this item also has a good chance of completing the second and third steps.

Because the three steps in Item 1 are about equally difficult, the matching of only one 
shape (performance level 1), and the matching of only four shapes (performance level 2) are 
relatively improbable events. This can be seen in Figure 9.1g. According to the category 
probability curves for this item, children with abilities below -  1.33 logits will most likely make 
a 0 (i.e., not match even one shape), while children with abilities above —1.21 logits will 
probably make a 3 (i.e., match eight or more shapes). The positions of M  and S show that 
all three steps in Item 1 are easy for the children in this group.

Item 8: “Sorting Blocks”. In Item 8 each child is given a pile of twenty-four blocks and asked 
to arrange the blocks into six squares, each of a different color. One point is awarded for 
identifying and grouping four blocks of the same color. An additional point is awarded if the 
four blocks are arranged in a square. Since six squares are possible, this gives a maximum 
of twelve points on the item.



________________  FIGURE 9. lg ________________
RESPONSE CATEGORY PROBABILITY CURVES

FOR ITEM 1: MATCHING SHAPES

________________  FIGURE 9.1h ________________
RESPONSE CATEGORY PROBABILITY CURVES 

FOR ITEM 8: SORTING BLOCKS
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The four performance levels are

Performance Level 
0 1 2  3

+ 1 point + 5 points + 3 points 
Total Points Needed 0  * 1 ----------------> 6 -----------------> 9

To score 1 on Item 8 a child must identify any four blocks of the same color from the pile 
of twenty-four blocks. The second step is to score another five points (by grouping the re-
maining five colors, or by arranging some color groups into squares), and the third step is to 
score three more points (by arranging three more color groups into squares). The estimated 
difficulties of the three steps in this item are dgi = .58, dS2 = .63 and dSJ= -  .49. The category 
probability curves these difficulties define are shown in Figure 9.1h.

The second step in this item is not significantly more difficult than the first, signifying that 
the grouping of only one color is a relatively improbable event. The third step in Item 8 is to 
score three more points to make a total of nine rather than six points. This step is estimated 
to be relatively easy—easier, in fact, than either of the preceding steps in the item. This means 
that under the model, every child is estimated to be less likely to complete the second step 
than to complete the third step, i f  they reach it. As a result, completing only two steps is also 
an unlikely event.

Children with abilities below .24 logits where the 'O’ curve crosses the ‘3’ curve in Figure 
9.lh will probably fail to group any blocks of the same color, and so, will score 0 on Item 
8. Children with abilities above .24 logits will probably score nine or more points on the item 
and so make a 3. The intermediate performance levels in Item 8 add very little to the infor-
mation provided by this item. It should be possible to improve the functioning of Item 8 by 
changing the scoring scheme to make intermediate scores of 1 and 2 more probable outcomes.

9.2 ANALYZING ITEM FIT

The fit statistics for the fourteen d i a l  items are given in Table 9.1a. Two of these items 
have fit values greater than + 3.0. These are Items 6 (t = 3.79) and II  ( t= 3.33). Large positive 
fit values indicate more variation in the residuals than the model leads us to expect. This is 
produced by a surprising number of children scoring higher than expected on the item, and a 
surprising number of others scoring lower than expected. It is an indication that the item does 
not contribute consistently to defining the ability dimension marked out by the other items on 
the test.

In order to understand what item misfit means we will analyze the performances of these 
five hundred children on worst fitting Item 6 (t = 3.79). The category probability curves es-
timated for Item 6 are shown in Figure 9.2a. The curves for the four performance levels have 
been separated vertically to facilitate their inspection. The difficulties of the three steps in 
Item 6 are shown on the right of Figure 9.2a. The hardest step is the one from 0 to 1. The 
easiest is from 1 to 2. As a result, the probability curve for completing only one step is 
relatively low.

This brings out an important property of the Partial Credit model—the observed ordering 
of step difficulties need not resemble in any way the designed order of the response categories 
(0, 1, 2, 3). The horizontal ordering of the category probability curves in Figure 9.2a is fixed
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by the model. But the heights of these ordered category curves are free to vary. How they 
vary is determined by the relative difficulties of the item steps.

We can use the curves in Figure 9.2a to read off any child’s estimated probability of scoring 
0, 1, 2 or 3 on Item 6. A child who scores 35 on the test, for example, has an estimated ability 
of 2.02 logits and estimated probabilities of .08, .11, .29 and .52 of scoring 0, 1, 2 and 3 on Item 
6. In this particular sample there were thirty children who scored 35. We can use these 
sample-free category probabilities to calculate how many of these thirty children are expected 
to score 0, 1, 2 and 3 on Item 6 . These expected frequencies are 30(.08) = 2.4, 30(. 11) = 3.3, 
30(.29) = 8.7 and 30(.52)= 15.6.

Expected frequencies have been calculated in this way for each score group. They are 
plotted in Figure 9.2b and connected by straight lines. These frequency polygons show the 
expected number of children at each performance level for each score group of this sample of 
500 children. Superimposed on these model expectations are bar graphs showing the number 
of children actually observed at each performance level for each score group.

The observed counts in Figure 9.2b appear to match the overall expectations of the model 
reasonably well. But when the children scoring 3 on this item are examined more closely, it 
is seen that children with abilities below 1.5 logits score 3 somewhat more often than expected, 
while children above 1.5 logits score 3 somewhat less often than expected. On the other hand, 
when the children scoring 2 are examined, it is seen that among these children, it is those with 
abilities below 1.5 logits who score 2 somewhat less often than expected, while children above 
1.5 logits score 2 somewhat more often than expected. Another way of saying this is that the 
third step in Item 6 is less discriminating with respect to ability than the model expects it to 
be. This is the pattern of departure from expectation which the fit statistic of +3.79 has 
detected.

The task in Item 6 is to touch the thumb of each hand to the fingers of that hand in 
sequence. If the child touches all the fingers on one hand, but not in sequence, then they 
make a 1 on the item. If they touch the fingers of one hand in sequence, then they score 
2. Finally, if they touch the fingers of both hands in sequence, they score 3.

Figure 9.2b shows that some very able children who should have been able to complete 
this task on both hands completed it on only one hand (unexpected 2’s). In contrast, some 
less able children who should have completed the task on only one hand, completed it on both 
(unexpected 3’s). The reason for this needs to be investigated.

One possibility is inconsistencies in the way this item was understood by children or scored 
by observers. Some able children may have misunderstood exactly what this item called 
for. Some lenient observers may have relaxed their criteria for completing the third step. If 
either were so, then it should be possible to increase the utility of Item 6 by improving instruc-
tions to observers. Another possibility is that this item does not define the same variable as 
the other items, so that the connection between performance on this task and performance on 
the other thirteen tasks cannot be as strong as expected. Whatever the reason, the fit statistic 
of +3.79 for Item 6 identifies this item as requiring scrutiny.

Item 11 with a fit statistic of +3.33 manifests a similar performance problem. In Item 11 
the child is seated opposite the observer. Between them is a box. The child is handed a
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block and is asked to place it on, under, next to, in front o f  and in back o f  the box. The four 
performance levels are defined by the number of instructions correctly followed

Performance Level 
0 1 2  3

+ 1 + 2  + 2  
Total Instructions Followed 0 ----------------- » 1 ---------------- * 3 ---------------- > 5

Of the 500 children, 456 correctly followed at least three instructions, and so, completed 
the first two steps in Item 11. But of these 456 children, only 208 correctly followed all five 
instructions. As a result, the first two steps in Item 11 are estimated to be relatively easy 
(dnj=  -1.49, d n j =  -.83 ), and the third step is estimated to be relatively difficult
(da j  = 2.66).

A possible explanation for the misfit of Item 77 is confusion over which side of the box 
is the “ front” and which is the “ back”. The d i a l  manual requires that the block be placed 
in front of the box from the child’s perspective. But older children may realize that the “ front” 
of the box from their perspective is the “ back” from the observer’s perspective and position 
the block from the observer’s perspective instead. Being older and better able to appreciate 
the perspectives of others may count against children taking Item 77 and thus account for the 
misfit of this item.

Two items of the d i a l  test, Item 4 (t= -4.81) and Item 5 (t= -5.28) have large negative 
fit statistics. The category probability curves for Item J  are shown in Figure 9.2c. First, 
notice the differences between these curves and the curves for Item 6 in Figure 9.2a. Extreme 
scores of 0 or 3 are less likely on Item 5 than on Item 6 for every point on the ability contin-
uum. At the same time, in-between scores of 1 and 2 are more likely on Item 5. This can 
be understood in terms of the step difficulties for these items. The first step in Item 5 is very 
easy (-1 .34  logits) making a score of 0 on this item unlikely except at very low ability lev-
els. The third step in Item 5 is very difficult (+  3.40 logits) making a score of 3 unlikely except 
at very high levels of ability. The easy first step and difficult third step in Item 5 make scores 
of 1 and 2 more likely on Item 5 than on Item 6. Figures 9.2a and 9.2c show that while there 
is no connection between the ordering of the response categories and the difficulties of the item 
steps in the Partial Credit model, there is a direct connection between the heights of the category 
probability curves and the relative difficulties of the item steps.

Once again, the category probability curves can be used to obtain the number of children 
in each score group expected to make scores of 0, 1 ,2  and 3. These are shown in Figure 
9.2d. The numbers of children actually making these scores have been superimposed on the 
model expectations.

When the 190 children who made a score of 2 on Item 5 are examined it is seen that 
children with ability estimates above 1.50 logits scored 2 more often than expected, while 
children with estimates below 1.50 logits scored 2 less often than expected. On the other 
hand, when the 162 children who scored 1 are examined it is seen that children with ability 
estimates above 1.50 logits scored 1 less often than expected while children below 1.50 logits 
scored 1 more often than expected. Another way of saying this is that the second step in Item 
5 is more discriminating than the model expects. This is the pattern of departures from
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expectation which the fit statistic of t — —5.28 has detected. It is opposite to the pattern we 
observed for step 3 in Item 6.

The tasks in Items 4 and 5 are very similar. In Item 4 each child is asked to copy four 
shapes, a circle, a cross, a square and a triangle, and in Item 5, to copy four letters E, N, D 
and S. The scoring systems for the two items are identical. If a child makes no attempt at 
any of the letters in Item 5 they score 0. If they scribble on any one of the four attempts, they 
make a 1. This means that the first step in Item 5 is taken as soon as the child marks the 
paper.

The second step in Item 5 is estimated to be much more difficult than the first. To make 
a 2 on Item 5 two of the child’s attempts must resemble the letters being copied. The third 
step is estimated to be even more difficult than the second. To make a 3, two attempts must 
resemble the letters being copied, and the other two letters must be reasonably well-formed.

Figure 9.2d shows that the misfit of Item 5 is due to more high ability children than expected 
completing the second step in the item (unexpected 2 ’s), and more low ability children than 
expected failing the second item step (unexpected l ’s). This could be the result of inconsist-
encies in the way observers recorded performances on this item. If so, then it should be 
possible to control these irregularities by improving the instructions for Items 4 and 5. Another 
possibiltiy is that some of the older and generally more able children in this sample have been 
recently taught the copying skills needed for success on Items 4 and 5. This would give them 
an advantage on these items which went beyond their general level of development. If this 
were found to be the case, the measuring performance of this screening test could be improved 
by replacing Items 4 and 5 with items less contaminated by the effects of recent training.

9.3 DIAGNOSING MISFITTING RECORDS

We can also examine the performances of children for misfit. The five children with the 
largest misfit values are shown in Table 9.3. The responses of these children are displayed on

_________  TABLE 9.3__________
DIAGNOSING PERSON MISFIT

CHILD ABILITY ERROR FIT RESPONSES IN
NUMBER b„_________  t„  ITEM SEQUENCE ORDER

60 1.12 .39 3.78 3 0 0 0 3 3 2 3 2 3 3 3 3 2
♦ * * *

105 1.28 .40 3.41 3 3 0 1 2 3 2 3 3 3 3 2 3 0
* * *

324 2.53 .55 3.31 3 3 0 3 3 3 1 3 3 3 3 3 3 3
* ♦

149 3.26 .67 3.30 3 3 3 3 3 0
*

3 3 3 3 3 3 3 3

297 3.26 .67 3.30 3 3 3 3 3 0
*

3 3 3 3 3 3 3 3

* *ni ~E ai I rw'% >  2
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the right of the table, and the scores identified as most surprising are marked with asterisks. Child 
60 with an estimated ability of 1.12 logits, for example, made a 3 on Item I. This means they 
matched at least eight shapes to the design in the “ Matching Shapes” item. This is not 
surprising for a child of this ability. But their scores of 0 on the next three items are very 
surprising. These three 0’s mean that they did not complete even the three-block tower in 
Item 2, that they did not take even the first step in Item 3 “ Cutting Paper” and that they did 
not even mark the paper in Item 4 “ Copying Shapes.”

These are surprisingly poor performances for a child of this ability. They become even 
more surprising when we note that this child then made a perfect score of 3 on Item J, “ Copying 
Letters.” A child who can complete all three steps in Item 5 should certainly be able to 
complete all three steps on the easier “ Copying Shapes” item. This leads us to be suspicious 
of this child’s performance record. It seems probable that these surprising 0’s are missing data 
or misrecordings that do not represent this child’s ability. Whatever the reason, it is doubtful 
that this child’s measure of 1.12 logits is a valid indication of his ability.

The records for the other four children in this table show similar anomalies. Children 149 
and 297 would have made perfect scores on this test had it not been for Item 6, upon which 
they both scored 0. These two children appear in the bottom right corner of Figure 
9.2b. From Figure 9.2a it can be seen that the estimated probability of a child of ability 3.26 
logits scoring 0 on Item 6 is very close to zero.

Before we can accept the ability estimates of these five children we must uncover the 
source of their improbable response patterns and evaluate the diagnostic significance of their 
unexpected lapses. If they are due to scoring, recording or typing errors, then the ability 
estimates can be recalculated without the misinformation of these erroneous scores. If they 
are due to actual lapses in the children’s performance, then the implications of these particular 
lapses must be included in the final evaluation of each child.
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NOTATION

MODEL
probability Ttnik Model probability of Person n

responding in category k to Item i
P n ik Estimated probability of Person n 

responding in category k to Item i
P r ik Estimated probability of a person with test score r 

responding in category k to Item /
person P* Ability/attitude of Person n

K Estimated ability/attitude of Person n
K Estimated ability/attitude of a person with score r
Sn Measurement error

item step Difficulty o f / th  step in Item <
dV Estimated difficulty o f / th  step in Item i
* e Calibration error

item 8( Scale value of item /
d, Estimated scale value of Item i
S t Calibration error

threshold 7/ Response threshold j
hJ Estimated response threshold j
•j Calibration error

DATA
X„i Response of Person n to Item i
m, Number of steps in Item /
m Number of thresholds in response format
rn Test score of Person n
TU Number of persons responding in category j  of Item i
s„ Number of persons responding in or above category j  of Item
Si+ Sample score of Item i
S+j Sample score of category j
L Number of items
M Number of points on test
N Number of persons
K Number of persons with score r



FIT
Expected value of xni 

Wni Variance of jt„,
C„, Kurtosis of xni
yni Score residual
z„i Standardized residual
u, Unweighted mean square for Item /
vt Weighted mean square for Item i
qj Variance of weighted mean square for Item /
t, Standardized weighted mean square for Item /
ua Unweighted mean square for Person n
v„ Weighted mean square for Person n
qi Variance of weighted mean square for Person n
t„ Standardized weighted mean square for Person n
G/ Item separation index
H, Number of item strata
Rt Sample reliability of item separation
Gp Person separation index
Hp Number of person strata
R p  Test reliability of person separation

Probability of 
Completing 
xth step

TABLE 3.2
FIVE MEASUREMENT MODELS

<l>n
1

"b TTn
exp(pn- 8to)

l+expCPn-S*)
x =  1,2, . . . , nti

Probability of e x ^ ? 0 (P» ^
Scoring x 7Tn“  ~  X

S e x p S  O n - 8(,)
* = 0  j = 0

8 u = 8,- .....................................................Dichotomous.

8^ = 8* ........ ..........................................Partial Credit.

= Si+Tx .............................................. Rating Scale.

= 8 , + log[x /(m -jr+1)] .............. Binomial Trials.

Six = 8, + logx .................................. Poisson Counts.




