Likert or Rasch?

"Likert or Rasch? Nothing is more applicable than good theory" proclaim A. van Alphen, R. Halfens, A. Hasman and T. Imbos (Journal of Advanced Nursing, 1994, 20, 196-201). Let us benefit from their comparison of these methodologies.

Rensis Likert's method of summed ratings is widely used for analyzing and reporting questionnaire responses. "Distances on the Likert [raw score] scale are interpreted as equal over the full range of the scale. The scale is treated as an interval scale based on ordinal level item scoring" (p. 200). "All items are assumed to be replications of each other or in other words items are considered to be parallel instruments" (p. 197). "In Likert scaling, it is assumed that the trace lines [ICCs] of all items of the questionnaire coincide approximately. This implies that in Likert scaling no attention is paid to item `strengths' [difficulties]" (p.198). Further, Likert scaling limits its fit analysis to the computation of a reliability coefficient and inter-item correlations.

The paper continues with a discussion of Rasch scaling from the standpoint of the dichotomous model, because of the software available to the authors. Most remarks also apply to polytomous Rasch models.

"The aim of using the Rasch model is not only to scale subjects but also to scale items on the same continuum... The scaling procedure starts with the estimation of the parameters of the Rasch model... The next step is to test the fit between the model assumptions [specifications] and the data. When the items obey the Rasch assumptions, scale values for the items can be published and used for other [samples]. The researcher has shown explicitly that the scale is a unidimensional test with good measurement properties" (p. 199).

"Testing the fit between the data and the model, however, can lead to negative results [i.e., misfit]. In that situation three strategies are recommended in the literature. The first [Draco's] strategy is to start all over again, design a new instrument with new items and gather new data. The second [for people more interested in fit than meaning] is to look for another latent model which offers a better explanation of the pattern of item responses. The third strategy is to analyze the data and to remove items' or subjects' scores [or individual aberrant responses]. It may be that one or more items or a certain subsample of subjects are responsible for the misfit between the model and the data. In this [truly scientific] strategy, statistical arguments and arguments of content both have to govern item or subject reduction" (p. 199).

"Rasch models have very strong points. First, the probabilistic nature of the model, in contrast with deterministic models like the Guttman scale, takes into account that human [or any other] responses are subject to fluctuations. Second the assumptions [specifications] of the Rasch model can be tested statistically. Third, a Rasch scale is a psychometrically proven interval scale: you know better what you are measuring [surely the whole point of the process!]. Fourth, the estimates of the person and item parameters are sample-free. This means they will hold for every sample and not merely the sample under consideration. A final strong point is the availability of [fit] information about the various items [and persons]" (p.200-1).

"One of the disadvantages lies in the fact that applying the Rasch model requires some knowledge of and acquaintance with mathematics [of the analyst, but not of the intended audience]... Second, a disadvantage of the Rasch model is the great number of observations or replications that are needed to estimate the parameters of the model [but Wright & Stone manage fine with 35 children]. Third, the Rasch model holds strong assumptions which are not easy to meet by the observations. [In fact, Rasch specifications can never be met perfectly, but are nearly always met usefully by thoughtfully collected data]" (p.201).

This paper identifies the theoretical issues admirably. All the Rasch proponent need add is a worked example.


Likert or Rasch? Linacre JM. … Rasch Measurement Transactions, 1994, 8:2 p.356

Please help with Standard Dataset 4: Andrich Rating Scale Model



Rasch Publications
Rasch Measurement Transactions (free, online) Rasch Measurement research papers (free, online) Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Applying the Rasch Model 3rd. Ed., Bond & Fox Best Test Design, Wright & Stone
Rating Scale Analysis, Wright & Masters Introduction to Rasch Measurement, E. Smith & R. Smith Introduction to Many-Facet Rasch Measurement, Thomas Eckes Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, George Engelhard, Jr. Statistical Analyses for Language Testers, Rita Green
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Journal of Applied Measurement Rasch models for measurement, David Andrich Constructing Measures, Mark Wilson Rasch Analysis in the Human Sciences, Boone, Stave, Yale
in Spanish: Análisis de Rasch para todos, Agustín Tristán Mediciones, Posicionamientos y Diagnósticos Competitivos, Juan Ramón Oreja Rodríguez

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

www.rasch.org welcomes your comments:

Your email address (if you want us to reply):

 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
March 31, 2017, Fri. Conference: 11th UK Rasch Day, Warwick, UK, www.rasch.org.uk
April 2-3, 2017, Sun.-Mon. Conference: Validity Evidence for Measurement in Mathematics Education (V-M2Ed), San Antonio, TX, Information
April 26-30, 2017, Wed.-Sun. NCME, San Antonio, TX, www.ncme.org - April 29: Ben Wright book
April 27 - May 1, 2017, Thur.-Mon. AERA, San Antonio, TX, www.aera.net
May 26 - June 23, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 30 - July 29, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
July 31 - Aug. 3, 2017, Mon.-Thurs. Joint IMEKO TC1-TC7-TC13 Symposium 2017: Measurement Science challenges in Natural and Social Sciences, Rio de Janeiro, Brazil, imeko-tc7-rio.org.br
Aug. 7-9, 2017, Mon-Wed. In-person workshop and research coloquium: Effect size of family and school indexes in writing competence using TERCE data (C. Pardo, A. Atorressi, Winsteps), Bariloche Argentina. Carlos Pardo, Universidad Catòlica de Colombia
Aug. 7-9, 2017, Mon-Wed. PROMS 2017: Pacific Rim Objective Measurement Symposium, Sabah, Borneo, Malaysia, proms.promsociety.org/2017/
Aug. 10, 2017, Thurs. In-person Winsteps Training Workshop (M. Linacre, Winsteps), Sydney, Australia. www.winsteps.com/sydneyws.htm
Aug. 11 - Sept. 8, 2017, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Aug. 18-21, 2017, Fri.-Mon. IACAT 2017: International Association for Computerized Adaptive Testing, Niigata, Japan, iacat.org
Sept. 15-16, 2017, Fri.-Sat. IOMC 2017: International Outcome Measurement Conference, Chicago, jampress.org/iomc2017.htm
Oct. 13 - Nov. 10, 2017, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 5 - Feb. 2, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 10-16, 2018, Wed.-Tues. In-person workshop: Advanced Course in Rasch Measurement Theory and the application of RUMM2030, Perth, Australia (D. Andrich), Announcement
Jan. 17-19, 2018, Wed.-Fri. Rasch Conference: Seventh International Conference on Probabilistic Models for Measurement, Matilda Bay Club, Perth, Australia, Website
May 25 - June 22, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 29 - July 27, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 10 - Sept. 7, 2018, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 12 - Nov. 9, 2018, Fri.-Fri. On-line workshop: Practical Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
The HTML to add "Coming Rasch-related Events" to your webpage is:
<script type="text/javascript" src="http://www.rasch.org/events.txt"></script>

 

The URL of this page is www.rasch.org/rmt/rmt82d.htm

Website: www.rasch.org/rmt/contents.htm