Commercial Measurement and Academic Research

Are precision instrumentation and technology the products, by-products, or spin-offs of scientific research that is conducted in, by, or through academic institutions? No! "Historically the arrow of causality is largely from the technology to the science" (Price, 1986, p. 240).

Scientific discoveries and theories do not lead to technological innovation. Rather, technological innovations spring up from within the framework of existing engineering problems in industrial and commercial contexts. Wallace (1972, p. 239) in his classic study of the Industrial Revolution discovers that economic pressures drive the development of new technologies more often than new scientific discoveries calling for application. Kuhn (1977, p. 90) makes this point in an example from the history of energy conversion processes, showing that the vast majority of the pioneers who had some degree of success in quantifying conversion processes were engineers who actually worked with engines.

Rabkin (1992, p. 66) makes the same point again with regard to the sequence of events assumed in a 1965 US National Academy of Sciences report. Rabkin says that the usual "scheme seems to be at variance with much of the evidence in the history of science. It has been shown that the integration of instruments has been rarely due to the demand on the part of the researcher. Rather it occurs through vigorous supply of advanced instruments on the part of the industry."

And so it is said that "thermodynamics owes much more to the steam engine than ever the steam engine owed to thermodynamics" and that "the chemical revolution resulted much more from the technique of the electric battery than from the careful measurements or new theories of Lavoisier" (Price, 1986, pp. 240, 248).

Thus, contrary to the popular perception of technology as a product of academic research science, it often, if not usually, happens that widespread commercial applications of a new technology precede the science based on that technology.

Many academic researchers believe that their measurement-theoretic quantitative tests and tools have a practical capacity to achieve results that are not accessible by other methods' lax standards. But where is the cutting edge in precision test- or survey-based measurement? What research publications set the pace and establish the standard, and how do they compare with the measures employed at the big educational and psychological test publishers?

To take the handiest example, I contend that Stenner et al. (2006) describe the state of the art in measurement applications in reading education. These applications currently involve about 20 million US students, 100,000 books, tens of millions of magazine articles, in English and Spanish, and every major children's book, elementary and secondary textbook, and reading test publisher. All of the work was performed by MetaMetrics, Inc. and its business partners (some of it with funding from the NIH's Small Business Innovation Research program). Nothing of comparable precision or validity, not to speak of widespread application, has yet been accomplished in academic research on reading measurement. Stenner's Lexile Framework for Reading is the living embodiment of the "vigorous supply of advanced instruments on the part of industry," as Rabkin puts it.

The bottom line is that there is considerable truth and value to be found in Ernest Rutherford's comment that, if you cannot understand the results of your experiment without doing a statistical analysis, then you should have done a better experiment (quoted in Wise, 1995, p. 11). Proper measurement in a clean experimental design obviates the need for complex and difficult statistical manipulations. Universal uniform reference standard metrics go the further distance of obviating the need for meta-analytic syntheses of different experiments, since everyone everywhere is able to see their results expressed in the same unit.

But if the history of science is to be believed, we're not going to have that kind of common language on any appreciable scale in outcomes research in education and health care until they can be made commercially viable. Alternative approaches that go against the historical grain might be worth considering, but the odds would seem to favor a new iteration of the old pattern.

William P. Fisher, Jr.

References

Kuhn, T. S. (1977). The essential tension: Selected studies in scientific tradition and change. Chicago, Illinois: University of Chicago Press.

Price, D. J. de Solla. (1986). Of sealing wax and string. In Little Science, Big Science--and Beyond (pp. 237-253). New York: Columbia University Press.

Rabkin, Y. M. (1992). Rediscovering the instrument: Research, industry, and education. In R. Bud & S. E. Cozzens (Eds.), Invisible connections: Instruments, institutions, and science (pp. 57-82). Bellingham, Washington: SPIE Optical Engineering Press.

Stenner, A. J., Burdick, H., Sanford, E. E., & Burdick, D. S. (2006). How accurate are Lexile text measures? Journal of Applied Measurement, 7(3), 307-22.

Wallace, A. F. C. (1972). Rockdale: The growth of an American village in the early Industrial Revolution (Technical drawings by Robert Howard). New York: W. W. Norton & Company.

Wise, M. N. (Ed.). (1995). The values of precision. Princeton, New Jersey: Princeton University Press.


Commercial Measurement and Academic Research, Fisher, W.P. … Rasch Measurement Transactions, 2006, 20:2 p. 1058



Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
Rasch Books and Publications: Winsteps and Facets
Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Rasch Models for Solving Measurement Problems (Facets), George Engelhard, Jr. & Jue Wang Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan

To be emailed about new material on www.rasch.org
please enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Rasch.org

www.rasch.org welcomes your comments:

Your email address (if you want us to reply):

 

ForumRasch Measurement Forum to discuss any Rasch-related topic

Go to Top of Page
Go to index of all Rasch Measurement Transactions
AERA members: Join the Rasch Measurement SIG and receive the printed version of RMT
Some back issues of RMT are available as bound volumes
Subscribe to Journal of Applied Measurement

Go to Institute for Objective Measurement Home Page. The Rasch Measurement SIG (AERA) thanks the Institute for Objective Measurement for inviting the publication of Rasch Measurement Transactions on the Institute's website, www.rasch.org.

Coming Rasch-related Events
May 17 - June 21, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 12 - 14, 2024, Wed.-Fri. 1st Scandinavian Applied Measurement Conference, Kristianstad University, Kristianstad, Sweden http://www.hkr.se/samc2024
June 21 - July 19, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Winsteps), www.statistics.com
Aug. 5 - Aug. 6, 2024, Fri.-Fri. 2024 Inaugural Conference of the Society for the Study of Measurement (Berkeley, CA), Call for Proposals
Aug. 9 - Sept. 6, 2024, Fri.-Fri. On-line workshop: Many-Facet Rasch Measurement (E. Smith, Facets), www.statistics.com
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

The URL of this page is www.rasch.org/rmt/rmt202b.htm

Website: www.rasch.org/rmt/contents.htm