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ABSTRACT 

Necessary and sufficient relations between measurement 

objectivity and psychometric response models for data in two 

categories are reviewed and extended. Rasch (1960, 1961) and 

others prove the sufficiency of Rasch models for objectivity. 

Roskam and Jansen (1984) prove the Rasch model for responses in 

two categories to be neces sary for transitivity. This paper con-

solidates and completes these necessity proofs which show that 

the probability models developed by Rasch are the only 

psychometric models which produce the measurement objectivity 

necessary for scientific comparisons. 

Key words: dimensionality, item response theory, 

latent trait theory, measurement, Rasch modal 



- 2 - 

Introduction  

Cur aim is to derive the model for measurement necessary for 

objective comparisons. Although proofs of the necessity of the 

Ranch model exist, these proofs are inaccessible, hard to follow 

or are based only indirectly on the principle of objectivity. 

The first section of this paper reviews the part measurement 

plays in scientific comparisons and gives a definition of objec-

tivity. The second section uses this definition to provide two 

proofs of the necessity of the Ranch model for two categories of 

observation. 

Section I: Scientific Comparisons and Objectivity  

The tradition in social sciences of defining measurement as 

"the assignment of numbers to objects" has the usual consequence 

of "do it and see what happens." The pursuit of measurement 

needs and can have a more fundamental background--one based on an 

understanding of the scientific process itself. 

We start by asking what conditions must be fulfilled for a 

statement to be qualified as scientific (beyond statements which 

are merely taxonomical). Four features appear indispensable: 

(1) a scientific statement deals with comparisons of its 

elements, 

(ii) these comparisons are made with respect to a 

particular property, 



- 3 - 

(iii) they are objective (in a sense to be defined), and 

(iv) they are expressible as differences between pairs 

of elements. 

A comparison involves objects of comparison, agents used to 

effect that comparison and interactions through which the effects 

of agents or objects are observed. The purpose of agents is to 

elicit from objects interactions which are particular to the pro-

perty of comparison. The interactions are qualitative because 

all we can observe is the presence or absence of a response. 

The idea that scientific observations begin as quantities is 

an illusion produced by familiarity with the measurement models 

on which the success of physical science is based. Even in phy-

sics, initial observations are qualitative. it is the measure-

ment models applied to observations which provide and maintain 

quantification. 

For an interaction I to be useful, it must be determined 

wholly and uniquely by the property common to object 0 and 

agent A as in 

I = f(3,A) 

Since an interaction is qualitative, the expression f need not 

be mathematical but merely a correspondence. 
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A comparison between objects 0
1 and 0

2 is a scientific 
statement about 0

1 and 0
2 when and only when it can be based 

solely on the interactions 

I I  = f(01 ,A) and 12 ---. f(02 ,A) 

This comparative statement is realized as the function g which 

brings the two interactions together into one expression involv- 
ing I 1  and 12  , 

g(Il , /2) 	g[f(01 ,A), f(0 2 ,A)] 

The statement g is about objects 0 1  and 02  with 
respect to some useful agent A . But for a comparison g(I11/2) 
of objects 0 1  and 0 2  to be objective, the function g must 
be independent of which A has been employed to produce the 

interactions. Were g to vary with A , it would be impossible 

to extract any general statement from g about the comparison of 
01 and 02 . Instead every statement comparing 0

1 and 0
2 

would depend on the particular A involved, There would be as 

many results for the comparison as there were agents. We must, 

therefore, be able to write, for any suitable A , the function 

g as a function, v , of 01  and 02  and nothing else, 

g(1 1 ,I 2 ) x gtf(0 1 ,A), f(02 ,A) - v(01 ,02 ) . 

This is the only formulation under which the comparison of 
objects 0 1  and 02  could be called objective. We have made no 
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mention of quantification except that the function g must have 

a value, We have made no mention of probability, no mention of 

test items or persons, no mention of psychometrics. Psychometric 

models enter as special cases of the above formulation and, in 
that sense, can be as objective as the measurement models in any 

science. 

Objectivity of comparisons must also apply to comparisons 

among agents. For a comparison of agents A l  and A2  , the 
function g(I 1 ,1 2 ) must be independent of which object. 0 has 

been employed to produce the interactions. For any suitable 0 

we must be able to write 

g(I 1 ,12 ) = g[f(O,A1 ), f(0,A2 )] = w(A1 ,A2 ) 

Objectivity is certainly not to be expected in general from 

any arbitrarily chosen function g On the contrary, we must 

ask whether there exists any g at all, and if so, whether it is 

useful. We will show that there are frames of reference involv-

ing 
0's , A's and I's for which the answer is affirmative. 

A particular frame of reference arises if we represent its 
elements by the 

scalar parameters X for interactions, Et for 

objects and s for agents. When we enter a frame of reference 

which uses quantitative parameters to characterize 0 , A and 
I , the correspondence f becomes a mathematical function. 

Since the interaction I is to be uniquely determined by 0 

and A , the interaction parameter X must be a single-valued 
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function of object and agent parameters 	0 and 6 , namely 
= tom • 

In this case our expression for a comparison based on any 

suitable 6 becomes 

g(X 1 ,A 2 ) = gif(a 1 05)f(ig 2$ 	= v(2 0 ) 
2 	' 

We will show that it is possible to make a decisive state-

ment about the structure of the function f necessary to estab-

lish objective comparisons. Furthermore, the function f so 

derived will be unique. 

The arguments which follow also apply to frames of reference 

in which facets in addition to objects and agents are employed. 

An additional facet is not an extra dimension introduced into an 

existing facet. It is another set of elements added to the 

framework. The interaction I becomes a function f of K 

sets of elements, I = f(E 1 ,E 2 ,..,Ek) . A psychometric example 

would be a set of test items (E 1
) of examinees (E 2

) marked by 
graders 	(E 3

) , the elements of each set being characterized by 

parameters k for examinees, 	8 far test items and y for 

graders (Douglas 1982). 

Dimensionality  

In the preceding we specialized the frame of reference to 

the scalar parameters x for interactions, k for objects and 
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for agents. If interactions are constructed to support more 

than one dimension, we can extend the framework to cover a more 

general situation in which X 15 and d are multi- 

dimensional. 	For this we write X , 13 and 6 as vectors of 
dimensions p 	q and r . When r = 2 this implies that the 

agents utilized in the comparison of objects are each character-

ized by two parameters, 61  and 6 2 . A psychometric example of 

an attempt at r = 2 would be the specification of a difficulty 

and also a discrimination parameter for each item. 

The requirement that )1 and 6 fully characterize the 

object and agent means that the interaction x must be uniquely 

determined by and s , that is, , --- f($ 6) . This expres-
sion represents p equations because the dimension of >, is 

p . But the -requirement that the comparison of objects be unique 

means that these equations must be uniquely solvable for B for 

any 6 , say 6 0  , as in 

f -1 0,6 0  )  

This expression, however, represents q equations because 

the dimension of $ is q . Were p = 2 but q = r = 1 , we 

would have 

hZ f (3,6 ) 

= f ) 
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with two solutions 

B = cli% 	,t, 
1 ''' A  1 i  0 I  

Unless there is a relationship between X i  and A 2  which 

reduces the dimension of , to p = 1 , there will be two solu- 
tions for la . 

It follows that unique comparisons of B' s  for differing 

objects is impossible in the presence of an interaction X which 

is of a different dimension than that of 6 . By similar reason-
ing, with x and 6 we deduce that objectivity requires  

p - q = r . The vectors x , $ and $ must have one and the 

same dimension. 

This means that, if difficulty and discrimination are 

intended to define two different item characteristics, then the 

frame of reference must also contain two different person charac-

teristics, H 1  and 8 2 and at least m = 2 4 1 --- 3 response 

categories. When only two categories of interaction are avail-

able the dimension r is 2 - 1 = 1 . This shows that it is 
impossible to use a two-category interaction like 

"incorrect/correct," to characterize data by more than a scalar. 

It is equally impossible to characterize either objects or 
agents 

by more than a single scalar parameter. only by elaborating our 
observations to more than two categories of interaction can we 



-5 - 

explore the potential for additional, but equal numbers of, 

parameters for objects and agents. 

Probability Models 

To make the measurement framework practical, we must allow 

the relations among o , A and I to be probabilistic. The 

deterministic expression = f(8,0 implies that any forces 

contributing to the interaction other than 0 and 6 are so 

minor they can be ignored. until this century most scientific 

models used deterministic forms to approximate their purposes. 

Today, however, models of scientific phenomena tend to be 

expressed in a probabilistic form which maintains the identifica-

tion of salient forces, but permits the interactions observed to 
be disturbed by random perturbation. 

When we state that "the probability of an interaction is 

governed by 13 and 6 " we mean that we recognize the existence 

of forces in the determination of a particular interaction which 

We do not wish to accord parameter status. Instead, we ack-

nowledge them as unsystematic forces and represent them by speci-

fying the model as a probability of the interaction. 

To do this we replace the expression in which A is 

uniquely determined by 0 and 6 by P(A) = f(0,6) . All we 

require is that these unsystematic forces do not replicate from 

interaction to interaction so that the forces which dominate from 
one interaction to another remain 0 and 6 . 
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To put this probability to work we need to specify the range 

of possible interactions. In the case of two response categories 

we can let X°  stand for one category and X1  for the other. 

The observation as to which category occurs is qualitative, but 

their labeling always designates one of the categories as "a sign 

of what is being sought," as "more of what is to be measured." 

The indicative category will be represented by X1  and the pro-

bability of a response X falling in this category as 

P(XeX- ) = f(0,6) = P(0,6) 

in which the function p(0,6) replaces the function 	f(0, 6 ) to 

signify that it is a probability. 

Stochastic Independence  

A probability model defined to connect objects and agents in 

a particular frame of reference characterizes that frame of 

reference completely by definition. This means that B and 

fully characterize the interactions of objects and agents in 

this frame of reference. Had we intended other aspects of 

objects and agents to be involved, their effects would also have 

been parameterized and P would be a function of more variables 

than the present and 6  . 

This completeness of 0 and 6 means that nothing else is 

postulated to determine the probabilities of interactions. Thus 

the probability of any response, given values for B and g , is 
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independent by definition of the probability of any other 

response in the same framework. This independence permits the 

probability of any set of responses to be written as the product 

of the individual probabilities of the separate responses. 

Section  2: Necessity  Proofs for Objectivity  

Since the participation of objects and agents in the func-

tion P is symmetric, a derivation of the model necessary for 

objective comparisons can be done for a comparison of objects or 

a comparison of agents. The proofs which follow focus on a com-

parison of agents because that has been the choice of earlier 

authors. Proofs for the comparison of objects are identical. 

If comparisons between agents are to be independent of 

objects, it must be possible to form a probability function from 

the probabilities of the individual responses which is indepen-

dent of 6 . A comparison of 6
i 

and is
i 
 via any object 

e  must therefore be representable by a function 

g[P(B,6
i),P(0,6 i 

 )i 

which is independent of 6 . Since objectivity is realized only 

through the estimation of parameters from data, this function g 

must define a probability distribution for a set of responses. 
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Our necessity proof will retain generality if we consider 

any two agents i and j and any one object. If we can com-

plete a proof for this configuration, induction to mare objects 

and agents follows. A narrowing of the contenders for g is 

facilitated if we write out all possible combinations of 

responses for this case. We will represent "nonresponse" as a 0 

and "response" as a 1 , but this choice is no more than a con-

venient labeling. Any two symbols would suffice. 

Agent j 

0 	 1  

	

0 	[  
Agent i 	

(0, 0) 	(0, 1) 

	

1 	(1, 0) 	(1, 1) 

The probabilities of these four pairs of responses may be 

written in terms of the unknown P by noting that the probabil-

ity of a zero is the complement of the probability of a one . 

Hence 

P [(0,0)1 = [1-13(5,6i)][1-P(13,6,)] 

P [0,1)] = [1-P0,15 )1P0,6 ) 

P [(1_,0)1 - P(86 ) [1-P(3,a .)]  

P [(1,1)] 	p(o,5 )p(ep os ) 

The function g must be a probability of observable 

responses in order to estimate parameters. It must be indepen- 
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dent of B in 	order to be objective. 	Since 	P involves 0. , 

this means that 0 must cancel out of g . But canceling 

occurs only when g includes a ratio in which 0 is isolated in 

numerator and denominator. This means that g must be a condi-

tional probability. 

We cannot compare two agents unless their reactions to a 

common object differ. This means that the essential ingredient 

for g must be either P((0,1)) or P((1,0)} , since these are 

the only response patterns in which the outcomes for i and j 

differ. 

This leaves just three possibilities, 

(i) (0,1) conditional on (0,1), (1,0) and (0,0), 

(ii) (0,1) conditional on (0,1), (1,0) and (1,1), 

(iii) (0,1) conditional on (0,1) and (1,0). 

To dismiss possibilities (i) and (ii) we show that 0 does 

not cancel when 6
i equals 	6 	in r(o,s i ) and 	P(0,5

i ) . i 
The probability statement for (i) is the probability of (0,1) 

divided by the sum of the probabilities of the remaining three 

events. Letting P stand for 11(0,0 , this g becomes, 
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g 	P1(0,1) 1 (0,1) or (1,0) or (0,0)} 

(1 - P) P 

	

(1 - p) P + P(1 	P) + (1 - P) (1 - P) 

• P/(1 + P) 

• 1/(1 + 1/P) . 

since P is a function of 0 , so is the g of possibility 

(i). The same argument eliminates (ii). 

If there is a function independent of B , it must be the g 

of possibility (iii). Writing F. for 	P(0,5 1 ) we have 

g 	1:1(4,1) ! (0,1) or (1,0)) 

(I-P
0  .)P . 1 	kJ  

(1-P ai )P ai  + P si (1-P B1 ) 

P .(1-P ) 
= 1/ 	+  131 	3i  • 

(1-P )1' 61 	03- 
This means that 

P .(1-P ) 01 	ai 	= h 
P J  (1-Pki ) 	 (1) 

must be independent of 0 - 
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The Calculus Proof  

The first proof of the necessary structure of P follows 

Roskam and Jansen (1984) with two amendments. Their published 

proof contains a misprint and omits an important detail. For a 

function to be independent of a variable its rate of change with 

respect to that variable must be zero. In order to determine 

whether there is a P which makes h independent of B we 

equate the derivative of h with respect to 0 to zero and 

solve this equation for P . 

The derivative is 

POi (1-P
0j 
 ) - P

5i 
P
5j _ 

P
Si

(1-P 
Rj )[PI 1:13 (1-P 13i ) - P

o]
P ai l 

P
13j (l-P Bi ) [P

31 (1-P
ed )]2 

(2) 

where Ph i  is the derivative of P in  with respect to a . 
When 

we set this derivative equal to zero and simplify we obtain 

	

P
Bi P

BI (1-PRj 
	j Oi 
) = P P (1-P

0i 
 ) 

or 

P
5i  57  

( 3 ) PBi (1-13  

	

 
Oi 

) 	P
5j (1-P

ej) 

This result is remarkable because it equates an expression 
involving 	6 and 	d

i to an identical expression involving the 
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samesbutanyoulera.sinces.and 	are arbitrary 

agents of comparison, this means that these expressions are 

independent of which agent is chosen. At most they are a func-
tion of a , which we can write as 

P hi  - = k(S) 
P

Bi (1-P
Bi

)  

for any 6. , or 

dP
Ei  

k(12)dB . 	 (4) 
P Bi  

This is a partial differential equation in which the unknown 

P is a function of the two variables 0 and d . The solution 

is obtained by integrating both sides of the expression with 

respect to a and adding the two constants of integration neces-

sary to encompass the general form of P . 

Since the integral of 1i[P(1 - P)] 	is the logarithm of 
P/[1 - P] , the solution is 

lagL poi 	:1;(a)as + f 2 ( 6 ) 	C 
1-P

5i 	 ( 5 ) 

in which, for a complete solution, we nust include the term 
f 2 (6) 	a function of 	6 only, and the constant C . This 
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requirement can be verified by differentiating the right side 

with respect to 0 and noting that the derivatives of f 2  and 

C are zero. 

Since the first term on the right is only a function of 0 

it can be represented by 	f l (a). Rewriting P 86  as P(0,6), 

we have 

log P(6,6)  I 
-  f(13) 	f (d) 	C 

1-P(6, d) 	1 	 2 

( 6 ) 

as the form necessary for objectivity. 

This result shows that the functions f
1 of 	only and 

f2 of 6 only must enter additive/y. Any functions having reg-• 

ular properties will suffice. It is usual to write the Rasch 

model with the argument 	9 -6 	in which f1 (0) 	has been 

replaced by 0 if has been replaced by -6 and C has 

been set to zero. This facilitates referring to the characteris-

tic of the object as person "ability" and to that of the agent as 

item "difficulty." The mathematics of the model would be 

unchanged were we to use d as f (6)in order to interpret the 

agent characteristic as item "easiness." The polarity of B may 

also be reversed. 
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When we choose the functions and constant such that 

Log[

P(11,6)  I = 0-6 
1-p(aos) 	 (7) 

and exponentiate both sides, we get the familiar Rasch model 

1 	exp(13 - 6) 	 (8) 

as the unique function necessary for objective measurement from 

resioonses in two categories. 

Were we to attempt characterizing each agent by more than 

one parameter, say by the three item parameters 6 i1  6 i2  and 
6
i3 

, the above proof produces the same result. This shows that 

the three parameters must appear together in the function 

f 2 (is d ig, 6
13 ) and exert their effect only within the argu-

ment of the exponent and only as additive with respect to 

f l ( a) . There is no way to obtain objectivity from a response 

model involving item parameters which multiply f 1 (B) (like the 

usual item discrimination parameter) or which appear outside the 

argument of the exponent (like the usual guessing parameter). 

When there are more than two sets of elements in the frame- 

work, say 	a for objects, 6 for agents and Y for graders, 

the necessary model is analogous to the above. 	The sufficiency 

proof for this extension is given by Douglas (1982); the 
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necessity proof requires the exponent to be 

f 	f2 (6) 	f3 (•() + C . 

The Algebra  Proof  

Pasch (1966) derived an alternative proof, not involving 

calculus. The proof begins at the paint where we realize that 

P (1-P
8]

) 

P8)(1-P si ) 

is the function which must be independent of $ to ensure objec-

tivity. 

Since this expression is to be independent of S 
, its value 

must remain the same regardless of the value of 6 . We can 

therefore set g at any value b . Since the result must hold 

for both 0 and b we have 

P
5i 	

(1-P .) 	P 	(1-P ) 

9  ) P (1-P ) 	Pbj (1-Pbi ) 	

( 

eJ 	ai 
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which can be rearranged so P oi  is on the left 

P 	P 	P 	1 `P  b]  13 i 	- 	
P SG' 
	bi --- 

1-P
3i 	1-P Bj 	1-P bi 	Pbj 	

(10) .  

Since this equation must be true for any d i  and 8 j , it must 
be true when we replace s

i  by any value d . Hence 

Pei 	
= 
	P13d 	Pbi_ 	1-Pbd   —_ 1-P

RI. 	1-13 Od 	1-Pbi 	rbd 	 (11) 

Taking logarithms we have 

log [ P Rii = log [  P 6d  ] + log [  P bi  I + log [ 1-P bdi.  1-1)
61 	1-13 	 1 - 13bi 	 P 3d 	 bd 	(12)  

Once again the log odds function of p ai  is partitioned into 

three additive parts. The first part on the right varies only in 

0 . The second part varies only in 6 . The third part is a 
constant, the value of which is determined by the choices of b 
and d . Hence 

log [ P(13 ' 6)  1 = f 1  0) + f 2 (15) + C 
i-P(3,6) 

(13) 

as required. 
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We have used conditional probabilities to obtain the struc-

ture of the response model P necessary for objective measure-

ment. Conditioning is an indispensable aspect of the construc-

tion of measurement models. Although one derivation of this 

model is based on the requirement of sufficient statistics 

(Andersen 1973), we believe that objectivity in measurement is 

the fundamental necessity. 

f12123111 and Conclusions  

This paper defines and applies the principle of objectivity 

in scientific comparisons. We show that objectivity is a neces-

sary property of any number qualified to be a measure. Objec-

tivity describes the situation in which the magnitude of the 

measure is not affected in any important way by any aspect of the 

measurement framework other than the object itself. In particu-

lar, the measure is independent of which agents are used to pro- 

duce it and of any other objects which may or may not be meas-
ured. 

The conditions which objectivity places on the representa- 

tion of objects and agents lead to decisive requirements concern-

ing dimensionality: 

1. object and agent parameters must come in pairs, i.e., 

the number of object parameters must equal the number 

of agent parameters, 
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2. the number of object/agent parameter pairs cannot 

exceed one less than the number of categories employed 

to elicit a response, i.e., the maximum dimension 

available in two categories is one. 

These dimensionality requirements deny the objective estima-

tion of two, three or more item parameters from psychometric data 

with only two categories. They also deny the objective estima-

tion of more than one item parameter in the presence of only one 
person parameter. 

Proofs of the necessity of the Rasch model for measurement 

have been derived from various requirements. Andersen (1973) 

bases his proof on the relationship between the Rasch model and 

sufficient statistics. Roskam and Jansen (1984) base their proof 

on the relationship between the Rasch model and the conjoint 

transitivity of a stochastic Guttman scale. We base our proof on 

the principle of objectivity. These proofs lead to the same con-
clusion: the model which connects observations and measures must 

be one in which the log-odds of an indicative response is 

governed entirely by a linear function of its parameters, as in 

log[22
1 - P 

= E15 

The derivation of objective measurement from the observation 
of indicative events shows that reliance on the observation of 

qualities does not make social science measurement inferior to 
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physical science measurement. All measurement begins with count-

ing observations of qualities. Whatever the field of scientific 

inquiry, the necessary structure of a model for objective com-

parisons of entities remains the same. In particular, persons 

responding to test itens in which responses intended to be indi-

cative (e.g., "corrcct") have been labeled prior to data collec-

tion may be measured as objectively as any object of any scien-

tific inquiry. 
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