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THE NOTION OF REDUNDANCY AND ITS USE AS A QUANTITATIVE MEASURE  
OF THE DEVIATION BETWEEN A STATISTICAL HYPOTHESIS AND A SET OF 

OBSERVATIONAL DATA  

P. Martin-L6f 

University of Stockholm 

Summary 

It is proposed to supplement the critical level, as used in 

ordinary significance testing, by a measure of the magnitude of 

the departure of the observed set of data from the hypothesis to 

be tested. This measure, which is called the redundancy, appears 

in two versions, one microcanonical (or combinatorial) and the 

other canonical (or parametrical). The microcanonical redundancy 

is obtained by dividing minus the logarithm of the critical level 

by the Boltzmann entropy of the experiment and the canonical 

redundancy by dividing minus the logarithm of the likelihood ratio 

by the Gibbsian entropy. An approximation theorem shows that the 

former may be approximated asymptotically by the latter. The 

problem of calibrating the redundancy scale is discussed in 

connection with a series of examples, and, finally, certain 

considerations concerning the size of a statistical experiment are 

given which are based on the redundancy rather than the power 

function. 

Introduction  

In statistical practice, we . are faced with the following 

dilemma. When the number of observations is small, that is, when 

we have little information about the random phenomenon that we 

are studying, we easily get a positive result: this or that model 

fits the data satisfactorily, whereas with large sets of data 



our results are purely negative: no matter what model we try, we 

are sure to find significant deviations which force us to reject 

it. Exceptions are perhaps afforded by randomizing machines 

specially devised for the purpose of producing random sampling 

numbers. Even die casting leads to significant deviations from 

the hypothesis of equal probabilities for the six faces if one 

is sufficiently persistent, like Weldon with his 26306 throws of 

12 dice (see Fisher 1925). 

This indicates that for large sets of data it is too 

destructive to let an ordinary significance test decide whether 

or not to accept a proposed statistical model, because, with few 

exceptions, we know that we shall have to reject it even without 

looking at the data simply because the number of observations is 

so large. In such cases, we need instead a quantitative measure 

of the size of the discrepancy between the statistical model and 

the observed set of data which will allow us to decide whether 

this discrepancy, although highly significant, that is, not 

attributable to chance, is nevertheless so small that the model 

must be considered as providing a satisfactory approximate 

description of the data. 

For certain special models or classes of models various such 

measures have indeed been introduced. For instance, in an r x s 

contingency table with a total of n observations, the quantity 

X
2 

n(min(r,$) - 1) 

which has been normalized so as to take its values in the closed 

unit interval (see Cramer 1945), measures the deviation from the 

hypothesis of independence. But it is not at all clear that it 

is meaningful to compare the values of this quantity for 

different contingency tables on a common scale. In fact, from the 

point of view adopted in the present paper, this will turn out not 

to be the case. To make different values of the mean square 

contingency x 2/n comparable, it should instead be normalized by 

dividing by twice the sum of the entropies of the marginal 

distributions of the contingency table for which it has been 

calculated. 

Microcanonical redundancy 

Let X be a discrete sample space. By a statistic, I shall 

understand a function t(x) which is defined on X and takes its 

values in some discrete set T and which is such that the set X t' 

which consists of all outcomes x such that t(x) = t, is Finite 

for all choices of t in T. The sets Xt were called isostatistical  

regions by Fisher (1922). Let f(t) denote the number of elements 

in Xt' 
that is, the number of outcomes x such that t(x) = t. In 

statistical mechanics, the function f(t) is called the micro-

canonical partition function or, as in Khinchin (1949), the 

structure function. Also, the uniform distribution on Xt , 

	 if t(x) = t, 

Pt (x)  = 
t 2(t) 

O 1 	otherwise, 

is called the microcanonical distribution after Gibbs. It is 

defined, of course, only if X t  is nonempty, that is, if f(t) 	0. 

A statistical description of the outcome (or data) x 

consists of the observed value of t(x) together with the inform-

ation that x can be considered as drawn at random From the set Xt 

of all those outcomes x' for which t(x') = t = the observed value 

of t(x). 



By a (reductive) hypothesis,  I mean a hypothesis of the 

Form 

the data x can be described not only by the statistic 

t(x) but already by the simpler statistic u(x) . = u(t(x)). 

Here u(t) is a function defined on T with values in some discrete 

set U. Now, suppose that the hypothesis is true, that is, that 

x can be considered as drawn at random from the set X
u of all 

outcomes x' for which u(x') = u = the observed value of u(x). 

The corresponding microcanonical distribution is 

1  
if u(x) = u, 

p
u

( x ) = 	g(u) 
0 	otherwise. 

Hence, under the hypothesis, the distribution of t(x) becomes 

pu (t)  

f(t 	i ) 	
f u(t) = u, 

= 77 77  
0 	otherwise, 

where, of course, 

g(u) = 	f(t) 
t 

u(t)=u 

is the structure function determined by the statistic u(x) = 

= u(t(x)). 

I regard it as a fundamental principle that the smaller 

the number f(t(x)) of outcomes is that realize the observed 

value of t(x), the more does our observation x contradict the 

hypothesis that the statistic t(x) can be reduced to u(x) = 

= u(t(x)). By Fundamental principle, I mean that it does not 

seem possible to reduce it to any other more basic or convincing 

principles. 

According to the fundamental principle, we should define the 

critical level by 

1f(t')  
e(t) - 

x ,  g ( u )  = 	t' g(u) 
f(t(x , ))5_F(t) 	f(t')^f(t) 

and reject the hypothesis for the outcome x on the level e 

provided c(t(x)) < E. I have proposed to call this test, which 

was introduced in Martin-Laf (1970), the exact test  of a 

reductive hypothesis since it is a general formulation of the 

procedure used by Fisher (1934) in his so -called exact treatment 

of a 2 x 2'contingency table. 

The statistical interpretation of the critical level is as 

usual that 

c(t(x)) is the probability of getting an outcome which 

deviates at least as much From the hypothesis as the 

observed outcome x. 

Here the probability is with respect to the microcanonical 

distribution determined by u = the observed value of u(x). 

However, in addition to the statistical interpretation, the 

critical level allows an information theoretic interpretation 

which says that 

- log 2  E(t(x)) is the absolute decrease in the number 

of binary units needed to specify the outcome x when 

we take into account the regularities that we detect 

by means of the exact te*.,  

Let us namely order the g(t. 	,414..mes x For which u(x) = u 

according to their associated values of f(t(x)) 

x 1 	
x
2 

f(t(x 1 )) 5_ f(t(x 2
)) 	5 ... 

and give them binary codes as Follows 



x
1 
	x2 	x3 
	

x
4 

1 	10 	11 	100 

Then the length of the binary code of an outcome x for which 

• u(x) = u is at most roughly 

log 2 	E 1 	= log 2 	E f(ti ). 
x , 	 t ,  

f(t(x , ))f(t(x)) 	f(t 1 ).f(t(x)) 

This should be compared with 

log2  g(u) 

which is roughly the number of binary units that we need in 

general to- code an outcome x for which we only know that u(x) = u. 

Hence the (absolute) decrease is 

log 2  g(u) - log 2 	E f(t') = - log 2 e(t(x)). 

f(t')5.f(t(x)) 

It is hardly astonishing that for large sets of data, that 

is, For large values of log 2  g(u), say of the order of magnitude 

106 , it will only very exceptionally be the case that 

- log 2  E(t(x)) < 10 which is required for acceptance of the 

hypothesis on the level of significance 0.001. This is remedied 

by considering, instead of the critical level, the microcanonical  

redundancy 

R(t) = _ 
g ( u ) 

	 u(t) = u, 

which is of course, independi 	the base of the logarithms. 

Since 

1 	< E(t) < 1 
- 	- 

we have 

0 < R(t) < 1 

with R(t) = 0 and 1 corresponding to e(t) = 1 and 1/g(u), that is, 

perfect and worst possible Fit, respectively. The interpretation  

of the microcanonical redundancy is obtained directly from the 

information theoretic interpretation of the critic level. Thus 

R(t(x)) is the relative decrease in the number of 

binary units needed to specify the outcome x when. 

we take into account the regularities that we 

detect by means of the exact test. 

Example 1. 2 X 2 contingency table. Each of n items is 

classified according to two dichotomous properties so that the 

outcome of the whole experiment may be represented in the form 

x = ((2,1),(1,2),...,(1,1)). 

The data are summarized in the usual Four Fold table 

1 	2 	total  

1 	n11 	n12 	
n 1• 

2 	n21 	
n22 	

n2. 

	

total n1 	n -2 	n 	= n • 
Put 

t(x) = (n 11 ,n 12 ,n 21 ,n 22 ) 

and 

u(x) = u(t(x)) = (n 1. ,n 2-
,n .1 ,n .2

) 

= (n +n ,n +n ,n +n ,n +n ) 11 	12 	21 	22 	11 	21 	21 	22 ' 

Then 

f(t) - 	
n!  

n 	!n 	!n '!n 

	

11 	12 	21 	22' 
and 	• 	. 

n! 	n!  
g (u)  = 17-17--T n !n ' 

	

1. 	2•' 	-1 	-2' 

The hypothesis that t(x) can be reduced to u(x) = u(t(x)) is the 

usual hypothesis of independence. It is rejected by the exact 



test if the hypergeometric probability 

f(t) 	n!n!n!n .2
! 

g(uJ 	 n! 	 n
11

!n
12

!ri
21

!ri
22! 

is too small. 

For Lange's data concerning the criminality among the twin 

brothers and sisters of criminals (see Fisher 1934) 

	

convicted 	not convicted 	total 

monozygotic 	 10 	 3 	 13 

dizygotic 	 2 	 15 	 17 

total 	 12 	 18 	 30 

we get 

n
11 	

0 	1 	 10 	11 	12 

T) 	30!  
476 	12376 	... 	 2992 	102 	1 g u) 	13!18! 

so that the critical level becomes 

e(t)' - 1
30

; 8! 	' 1 + 102 + 476 + 2992) = 0.00054 

which is slightly larger than Fisher's value since he neglected 

the term corresponding to n 11  = 0. The corresponding micro- 

canonical redundancy is 

R(t) - - log gu
122-(

.1
), = 0.20. 
) 

Canonical redundancy 

We shall now assume that the statistic t(x) takes its values 

in Zr  and that the sum 	 • 

cgs.)  = 
	ea t(x) = 	ea.t f(t)  

x 	 t 

converges in the neighbourhood of at least some point a in R
r

. 

The parameter space  A c Rr  is defined to be the largest open set  

on which the sum converges. The function cp(a), which is the 

Laplace transform of f(t), is called the canonical partition 

function.  It is positive and analytic on A. For a in A, the 

canonical distribution  of x is defined by 

1  
Pa (x) 	pta) e 

 

The induced canonical distribution of t(x) is then clearly 

1 	
a) 

p,
a
(t) - 	e

at 
 f(t) 

p( 

and the first two moments of t(x) are given by 

m(a) = E a (t) = grad log cp(a) 

and 

	

log 	 \ 
V(a) = Vara(t) -

ba .ba
p( a)

) ' 

Like any variance matrix, V(a) is positive definite, and it is 

strictly  positive definite if and only if the range of t(x) or, 

what amounts to the same, the support of f(t) is not contained 

in a coset of a subgroup of Z
r 

of lower dimension. Note that 

this is a condition which does not depend on a. By replacing 

t(x) by t(x) - t o and diminishing r, if necessary, we can and 

shall in the following assume that this condition is fulfilled. 

It implies no restriction of generality, because the passage From 

t(x) to t(x) - t o and the decrease of r does not alter the induced 

partitioning of the sample space. 

The function log cp(a) is analytic and, under the assumption 

just made, strictly convex. Therefore grad log cp(a) is one-to-one 

and analytic and has an inverse a(t) which is defined and analytic 

on the image of A under grad log cp(a). a(x) = a(t(x)) is the 

maximum likelihood estimate  of the parameter a, because 

log p a(a) = a•t(x) - log p(a) 



is a strictly concave Function of a which assumes its unique 

maximum when 

t(x) = grad log cp(a) 

provided t(x) belongs to the range of grad log p(a). 

The canonical or Gibbs entropy is the quantity 

H(a) = E a (- log p a (x)) = log cp(a) - a•m(a). 

Using it, we obtain the following simple expression for the 

attained maximum value of the likelihood, 

max p (x) 1 	ea(t(x))•t(x) = e
-H(a(t(x))) = a 	a 	p(a(t(x))) 

assuming, of course, that x is such that t(x) belongs to the 

domain of a(t). 

We shall now turn to the problem of testing a reductive 

hypothesis of the form 

t(x) can be reduced to u(x) = u(t(x)) 

where u(t) is a homomorphism From Z r  to ZP  with p < r. Since 

a subgroup of a finitely generated free abelian group is again 

free and has at most as many generators (see Lang 1965, p. 45), 

we can assume that the homomorphism u(t) is actually onto Z. 

But then, after a change of basis in Z r , if necessary, we can 

write 

Zr  = Zp x Zq, 

where q = r - p is the number of degrees of freedom of the 

reduction, 

t = (u,v) 

and assume that the homomorphism u(t) is simply the associated 

left projection (again, see Lang 1965, p. 44). 

Partition the parameter vector a = (b,c) in the same way as 

t = (u,v) so that a•t = b•u + c•v, and assume that the parameter 

space A contains at least one point of the form (b,0). Then the 

canonical distribution associated with the statistic u(x) exists, 

1 	b.u(x) 
Pb (x)  = T757 a  

where 

‘11(b) = E eb.u(x) 	b.u(x)-1-0.v(x) = Le 	 = cp(b,0), 

and is obtained from the canonical distribution associated with 

t(x) by putting c = 0. Hence the associated parameter space B 

consists of all those values of b for which (b,0) belongs to A. 

The condition 

c = 

will be referred to as the parametric specification of the 

hypothesis that t(x) can be reduced to u(x) = u(t(x))• 

The canonical redundancy is defined by 

H(a  R(a) - 1 H(b(a)) 0) 

where b(a) is the solution of the equation 

P(m(b(a),0)) = P(m(a)). 

Here P denotes the left projection from RP  x Rq to 	If If we 

compare this equation with the maximum likelihood equation for b 

under the hypothesis c = 0, 

u = grad log t(b) = grad log cp(b,0) = P(m(b,0)), 

we see that 

b(a) = F.)(P(m(a))). 

The domain of R(a) equals the domain of b(a) and consists of all 

values of a in A for which P(m(a)) belongs to the domain of b(u). 

It is an open subset of A which contains all points in A of the 

form (b,0), because, if a = (b,0), then b(a) is clearly defined 



and equal to b. 

Whenever defined, R(a) satisfies the inequality 

0 < R(a) < 1, 

and, furthermore, 

R(b,c) = 0 if and only if c = 0. 

To see this, suppose that t and u belong to the domains of Rt) 

and b(u), respectively, where t = (u,v). Then 

H(a(t)) = min (log p(a) - a•t) 
a 

< min (log p(b,0) - b•u) = H(b(u),0). 
b 

Now, a belongs to the domain of R(a) if and only if both m(a) 

and P(m(a)) belong to the domains of a(t) and b(u), respectively. 

Hence we can put t = m(a) in the above inequality, use the Fact 

that 'a(m(a)) = a, and conclude 

H(a) < H(b(a),0), 

that is, 

R(a) 	0. 

Since log cp(a) - a.t is a strictly convex Function of a under 

the assumption that the structure function F(t) is not concentrated 

on a coset of a subgroup of lower dimension, equality holds if 

and only if a is of the form (b,0). Finally, the inequality 

R(a) < 1 

follows immediately from the Fact that, under the assumption 

about the support of the structure function, the distribution 

p
a
(x) is non degenerate so that its entropy satisfies • 

H(a) > 0, 

The canonical redundancy R(a) is a measure of the 

deviation of the parameter vector a = (b,c) from the hypothesis 

c = 0. Its relation to the microcanonical redundancy will be 

established in the next section. 

Example 1 (continued). For a 2 x 2 contingency table 

1 	2 	total 

1 	p 11 	p 12 	P 1• 

2 	p21 	p 22 	P2• 

total 	p 1 	p 2 	p 	1 

the canonical redundancy with respect to the hypothesis of 

independence pig 	pi . p p. .p 	becomes  .j 

1 	H(P11'P12'1321,1322)  

H( P1.' 13 2. )+H(P 1' P 2 )  
where 

H(P i ,...,Pn ) = - E Pi log Pi. 
i=i 

Example 2. Multinomial distribution. The canonical 

redundancy with respect to the hypothesis that all the multi-

nomial probabilities are equal, 

1 
P1 = P 2 = '" = Pn = F' 

becomes 
H(p i ,...,pn ) 

1 log n 

which is the redundancy as defined by Shannon (1948). 

The likelihood ratio with respect to the hypothesis c = 0 

is by definition 
max pb,0 (x) 

X(x) = x(t(x)) - max p (x) 
	  = eH(a(t(x)))-H(b(u(x)),0) 

a 	a  
assuming of course that t(x) and u(x) belong to the domains of 



a(t) and S(u), respectively. It allows us to give the following 

simple expression For the value of the canonical redundancy R(a) 

for the argument a = a(t), 

	

R(a(t)) = 1 	H(a(t))  _ 	log x(t)  

H(b(u),0) 	H(S(u),0) 

Thus R(a(t)) is - log X(t) normalized by dividing by the entropy 

H(S(u),0). Taylor expansion of log x(t) = log X(u,v) in v around 

the point v = Q(m(b(u),0)), where Q denotes the right projection 

from Rp+q to Rq  , yields 

2 
log X(t) = - 	+ terms of third and higher order 

where, using matrix notation and putting for brevity b = b(u), 

x 2  = (t - m(b,0))'V(b,0) -1 (t - m(S,0)) 

,‘ 	^  = (v - Qm(b,0))'0V(b,0) -1  Q'(v - Qm(b,0))• 

Hence 

2 
R((t)) = 	,X 

 
+ terms of third and higher order 

2H(b(u),0) 

which is a convenient formula to use for approximate computation 

of the redundancy when the value of x 2  is either known or easier 

to compute than H(a(t)). 

If the structure function F(t) is chosen in a pathological 

way, it can actually happen that the canonical redundancy R(a) 

is defined only on a proper part of the parameter space A. The 

following example is due to Thomas HOglund, Take p = q = 1 and 

put u-v 

[  (u-v)3 
e 	if v < u and v = 0 or 1, 

f(t) = f(u,v) = 

0 	otherwise. 

Then 

p(a) = p(b,c) = 	ebu+cvf(u,v) = ( 
	re;iebu )( 	eb+c ) 

 
u,v 	 u=1 u  

and the parameter space A is the half plane determined by the 

inequalities b < -1 and - < c < +00. The range of 

P(m(b,0)) = 6 log
b 
 p(b,0)  

is the open interval From -c0 to b 

cc 	u 
E 

	

u=1 u 3 	 1 

	

u 	e + 1 ' [e 	e -u 

u=1 u3  

whereas the range of P(m(a)) = b log p(b,c)  is the open bb 

interval from -co to 

00 	u 
[f3 lue-u  

u=1  u  + 1, u e I - E —7 eu  
u=1 -u 

the right end point being approached when b and c tend to -1 and 

+ 00, respectively. Hence there is no solution b(a) to the 

equation 	 • 

P(m(b(a),0)) = P(m(a)) 

when the components b and c of the parameter vector a = (b,c) 

are sufficiently close to -1 and +00. 

All exponential families that occur in practice turn out to 

be such that the range of m(a) = grad log p(a), which is always 

contained in the interior of the convex support of f(t), actually 

equals it. As shown by Barndorff-Nielsen (1970), this is 

equivalent to log cp(a) being steep  in his terminology. Now, 

suppose that the family of canonical distributions determined by 

u(x) satisfies this regularity condition, that is, that b(u) is 

defined on the whole of the interior of the convex support of 

g(u) or, what amounts to the same, that log *(b) = log p(b,0) is 

steep (which, in turn, is guaranteed by log cp(a) being steep). 

Then R(a) is defined on the whole of A, because, for an arbitrary 



choice of a in A, 

m(a) belongs to the interior of the convex support of F(t) 

which implies that 

P(m(a)) belongs to the interior of the convex support of g(u) 

which, in turn, implies that 

b(a) = b(P(m(a))) is defined. 

This argument, which is due to Ole Barndorff-Nielsen, shows that 

a counterexample such as that of HOglund has to be pathological. 

Approximation theorem  

In this section, we shall see that, in the case of a large 

number of independent repetitions of one and the same experiment, 

the microcanonical redundancy may be approximated by the canonical 

redundancy evaluated for the maximum likelihood estimate of the 

parameter. 

Consider a sequence of sample spaces 

Xn = X
n = X x 	X X 

n 
and statistics 

tn (x 1' ...,xn ) = Et(x.) i=1 

where, as before, t(x) takes its values in Z r . Then, with 

obvious notation, 

fn (t) = fn* (t), 	pn(a) = p(a) n , 

mn (a) = n•m(a), 	
Vn(a) = n•V(a), 

Hn (a) = n•H(a), 	an(t) = a(t/n). 

On the other hand, the parameter space A is the same regardless 

of the value of n. 

Assume that the support of the structure function F(t) is  

not contained in a coset of a proper subgroup of Z r . Note that 

this condition is stronger than the previous condition that the 

support of f(t) not be contained in a coset of a subgroup of 

lower dimension, which is equivalent to V(a) being strictly 

positive definite. Under the stronger assumption, we have 

the following saddle point approximation of the structure 

function, 

nH(a(t/n)) 
Fn (t) =    (1 + 0( 1 )) as n 

(2un) re/2,,/det V(a(t/n)) 

uniformly as long as a(t/n) stays within a fixed compact subset 

of the parameter space A. For a proof, see Martin-Lof (1970). 

We shall be concerned with a reductive hypothesis of the 

form 

t n 1''" n 
i1 

where u(t) is a homomorphism from Z r  = ZP-f q onto ZP which we may 

assume to be simply the left projection. The parametric 

specification of the hypothesis is then c = 0, assuming of course 

that the parameter space A contains at least one point of the 

form (b,0). Let Rn(t) denote the microcanonical redundancy with 

respect to this hypothesis and Rn (a) = R(a) the corresponding 

canonical redundancy. 

Theorem. As n 	co, 

Rn (t) = R(a(t/n)) ± 0( 1°9. n ) 

uniformly when a(t/n) stays within a fixed compact subset of the 

domain of R(a). 

Proof. By definition, 

log E* Fri (u, vi ) 
Rn (t) = Rn (u,v) = 1 log gn(u) 



where E *  indicates summation over those v' for which 

f
10. 
(u,v') < fn (u,v). The inequality  

Fn  (u,v) < E * Fn (u,v') 

< f n(u,v)(no. of v's such that fn (u,v) / 0)  

is trivial. The saddle point approximation gives 

log fn (t) = nH(a(t/n)) + 0(log n) 

and 

log gn (u) = nH(b(u/n),0) + 0(log n) 

as n 00 uniformly when a(t/n) and b(u/n) belong to compact 

subsets of A and B, respectively. Hence both of these asymptotic 

relations hold when a(t/n) stays within a compact subset of the 

domain of R(a). It remains to estimate the size of the support of 

n (u,v) regarded as a function of v. By assumption, the parameter 

space A contains at least one point of the form (b,0). But then, 

being open, it contains all of the 2q points (b,e ) and (b,-e.) 

for j = 1,...,q where 

= (0,...,e,...,0) ej  

j'th place 

provided c is a sufficiently small positive number. The trivial 

inequality 

En(u,v) • eb • u + c-v < cp(b,c) n 

implies that, if f n (u,v) / 0, then 

eb•u + c • v < cp(b,c) n . 

 

Applying this to c = e j  and -e j , we can conclude that, if 

fn (u,v) / 0, then 

b. 11-41 ) 7  

for j = 1,...,q where v = (v 1, 	v ). Hence the number of 

points in the support of fn (u,v) regarded as a Function of v 

is 0(ng) provided u/n is bounded as it is if b(u/n) belongs to 

a compact subset of B which, in turn, is guaranteed by the 

assumption that a(t/n) belongs to a compact subset of the domain 

of R(a). Summing up, 

R(t) = 1 	H(a(t/n)) 	
0( log n )  

n 
H(b (u/n),0) 	

n I  

as was to be proved. 

That the error term is best possible can be seen by 

considering the hypothesis that a binomial probability p = 1/2, 

because then 

1 Rn (t) = 1 - 7  log2 	
( n ) 
`t' /' 

t' 
( n )<( n )  

R(p) = 1 - (-p log 2  p - (1-p)log 2 (1-p)), 

and a simple calculation shows that Rn (t) - R(t/n) = log 2n/2n 

+ 0(1/n) when t/n is bounded away from 0, 1/2 and 1. 

Example 1 (continued). For Lange's data, the canonical 

redundancy computed for the maximum likelihood estimates of the 

parameters equals 0.1'7 which should be compared with the value 

of the microcanonical redundancy which was found earlier to be 

0.20. Thus the agreement is good even in this rather unfavourable 

case, especially as we shall only be interested in the order of 

1  magnitude of the redundancy. 

Calibration of the redundancy scale  

The redundancy enables us to measure quantitatively the 

discrepancy between a statistical hypothesis and a given set of 



data on an absolute scale. That is, whatever model and reductive 

hypothesis we consider, the interpretation of the redundancy is 

the same: it is the relative decrease in the number of binary 

units needed to specify the given set of data when we take into 

account the regularities that we detect by means of the exact 

test. Being the relative decrease of something, the redundancy 

takes its values in the closed unit interval. 

We shall now turn to the problem of giving a qualitative 

interpretation of the various quantitative values of the redundancy. 

This is a problem which is similar in nature to the problem of 

where to write very cold, cold, cool, mild, warm, hot, etc. along 

an ordinary thermometer scale. In both cases, the solution has 

to be found through case studies. The following table contains 

For certain values of the redundancy, which are taken to be 

negative powers of ten, my proposed qualitative interpretation 

and ,also, in the last column, the values of a binomial probability 

p that produce the redundancy in question with respect to the 

hypothesis p = 1/2. Thus the last column is a table of the 

inverse of the function 

R(p) = 1 - (-p log 2  p - (1-p)log 2 (1-p)). 

redundancy 	fit 

1 	 worst possible 	0.000 	1.000 

0.1 	very bad 	0.316 	0.684 

0.01 	bad 	 0.441 	0.559 

0.001 	good 	 0.482 	0.518 

0.0001 	very good 	0.494 	0.506 

The qualitative scale is admittedly tentative and needs to be 

corroborated by further case studies, but it is not as arbitrary 

- as it may seem. So much is clear already from the few examples 

considered below, that it would be too liberal to admit a 

redundancy of 0.01 as good and that, in the other direction, if 

only redundancies of at most 0.0001 were accepted as good, then 

statistical inference for large data sets would become almost 

wholly impossible. That is, we would be able to Fit statistical 

models only to very exceptional kinds of data, obtained, say, by 

coin tossing, die casting or observing a randomizing machine. 

Example 2 (continued). Consider an English text without 

spaces and punctuation marks. If the text is long, consisting 

of 10000 letters, say, we obtain For the redundancy with respect 

to the hypothesis of complete randomness 

a 	log p a - 	-pz log "P z 1 	 - 0.12 log 26 

where i"D' a ,...,p z  are the relative frequencies of the letters 

a,...,z. This corresponds to a very bad fit on the proposed 

qualitative scale. 

Example 3. Out of 88273 children born in Sweden in 1935, 

45682 were boys (see Cramer 1945). The relative frequency of 

boys equals 0.5175 and differs of course highly significantly 

From 0.5. However, the redundancy with respect to the hypothesis 

of equal probabilities for boys and girls is only 0.0009 which 

corresponds to the value good on the qualitative scale. 

Example 4.  Test of independence in a 4 X 5 contingency table 

showing the distribution of 25263 married couples according to 

annual income and number of children (see Cramer 1945) gives 

x 2 = 568.5 for 12 degrees of freedom, indicating a highly 

significant deviation. The corresponding redundancy, obtained 

by dividing the mean square contingency by twice the sum of the 



entropies of the marginal distributions, equals 0.005 which is 

a bit higher than one would be willing to accept. 

Example 5. The distribution of the head hair and eyebrow 

colours (light or red versus dark or medium) of 46542 Swedish 

conscripts is shown in a 2 x 2 contingency table in Cramer (1945). 

x 2 = 19288 for 1 degree of freedom so that the deviation is 

highly significant. The corresponding redundancy is 0.17, 

indicating a very high degree of association. 

Example 6. Weldon's dice data (see Fisher 1925). 12 dice 

were thrown 26306 times and, in each throw, the number of dice 

scoring 5 or 6 was recorded. Let p i  denote the probability of 

exactly i dice scoring 5 or 6. The first hypothesis is that 

Pi 	
12 i 	12—i 

	

• = ( • )P (1 —P) 	i = 0,1,...,12, 

for some p, giving x 2  = 13.2 for 11 degrees of freedom. Thus 

there is no significant deviation and no need to compute the 

redundancy. With respect to the second hypothesis, namely, that 

the dice are true, 

1 
P = -- 3 ' 

we get x 2 = 27.1 for 1 degree of freedom which is highly 

significant. The corresponding redundancy is nevertheless as 

small as 

	

27.1 	= 0.000024 
2-26306.12•1oge 6 

which falls well below the value corresponding to a very good Fit 

on the proposed redundancy scale. . The relative frequency of dice 

scoring 5 or 6 equals 0.3377 and is hence very close to 0.3333•• - . 

Example 7. Testing independence of sex and hair colour in the 

2 x 5 contingency table reproduced by Fisher (1925) ( Tocher's data) 

gives x
2 = 10.48 for 4 degrees of freedom which corresponds to 

a critical level between 0.02 and 0.05 (almost significance in 

Cramer's terminology). The number of observations is 3883 and 

this makes the redundancy as low as 0.0007 which corresponds to 

a good fit on the qualitative scale. 

Example 8. Traffic accidents. Let the index i range over 

the years 1961, 	 1966, the index j over 92 consecutive days 

from the end of May till the end of August and the index k over 

the speed limits 90 km/hr, 100 km/hr and free speed that were 

tried in Sweden during the period in question. Assume that the 

number of accidents involving injured people and reported by the 

police year i and day j follows a Poisson distribution with mean 

value X ij  and that the different accident numbers are independent 

The test of the hypothesis 

X ij = aik. Oi ij - 

wherekij is the speed limit year i and day j, gives for the 

Swedish accident data (see JOnrup and Svensson 1971) x 2  = 565 

with 446 degrees of freedom, indicating a highly significant 

deviation from the hypothesis. The corresponding redundancy 

equals 0.0038 and falls between good and bad on the proposed 

qualitative scale. Also, the test of the hypothesis that there 

are no effects of the speed limits, 

aik = a i' 

yields x 2 = 85 for 9 degrees of Freedom which is again highly 

significant, but the redundancy is now only 0.0006. Thus the 

effects of the speed limits are almost drowned by the bad fit of 

the model. 



Example 9. Wilson's model. The Stockholm region has been 

divided into 41 districts and For each of 407063 persons living 

and working in the region has it been recorded in which district 

the person lives and in which district he works. Thus the data 

(From Marksj6 1970) appear in the Form of a quadratic contingency 

table.Letpij be the probability that a person lives in 

district i and works in district j and assume the different persons 

to be independent. The hypothesis to be tested is that 

C  P i j = a.P.Y ji  

wherecij is the cost of transportation from district i to 

district j. This model has been proposed by Wilson (1967). For 

his data, Marksjb obtained x 2/degrees of freedom = 16.4 which is 

of course highly significant. However, because of the very large 

number of observations, the redundancy is still as low as 0.0041, 

a value which falls between good and bad on the proposed 

qualitative scale and corresponds to a deviation of a binomial 

probability from 0.5 by the amount 0.04. On the other hand, the 

hypothesis 

Y . = 1 

of no sensitivity to the cost of transportation leads to the 

redundancy 0.024 which is six times as high and worse than bad on 

the qualitative scale. 

Critical size of an experiment  

The following procedure for testing a (reductive) 

statistical hypothesis is suggested. To begin with, compute the 

critical level e(t). If e(t) > e, where e is the level of 

significance, we accept the hypothesis. If e(t) < e, we compute 

in addition the (microcanonical) redundancy 

R(t) - 	log e(t)  log g(u) 

and check whether R(t) < p or R(t) 	p where p is the limit of 

the redundancies that we are willing to tolerate. If R(t) < p, 

we accept the model although the observed deviation is significant 

because we think that it nevertheless describes the data with 

sufficient accuracy. Finally, if e(t) < e and R(t) 	p, we reject 

the model because the observed deviation is both significant. and 

unacceptably large. 

To be sure that an unacceptably large value of the redundancy 

is significant, that is, has probability < e, the experiment has 

to be so big that 1 

g(u) 	(i) P  

or, equivalently, 

log g(u) L. I log 1  --. 

Indeed, the inequality R(t) 	p is equivalent to e(t) < g(u) -P  

and, to be sure that the probability of this event is < e, we 

have to have g(u) -P  < e which is equivalent to the inequality 

above. Note that the expression 1 — log 1 — is much more sensitive 

to changes in p than changes in e. 

In the special case of n independent repetitions of one and 

the same experiment, the saddle point approximation gives 

log gn (u) = nH(b(u/n),0) + 0(log n) 

uniformly when b(u/n) stays within a compact subset of B. 

Neglecting the error term, the above inequality is then transformed 

into the inequality 

n 	1 	log 1  
pH(b(u/n),0) 



which allows us to determine the number of observations that we 

have to make in order to be sure that an observed redundancy p 

is significant. See the figure below. 

Example 10. Suppose that we want to test whether a coin can 

be regarded as ideal by tossing it n times. Then gn (u) = 2 

so that the above inequality specializes to 

1  log .1 . n p log 2 

In particular, for e = 0.01 and p = 0.001 we get n 	6644 which 

is roughly the number of times that we have to toss the coin in 

order to be able to detect substantial deviations from the 

hypothesis of equal probabilities for head and tail. 

critical 
level 

1 

\ 	e
-npH(b(u/n),0) 

accept 

'e 	 _ _ _ _ _ _ _ _ - _ 

reject 

n 

n - 	
1 	1 log - 

pH(b(u/n),0)  
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Kalbfleisch: My remarks are closely related to the comments of 

some of the previous discussants. A significance test answers 

the question "Are the observed observations significantly 

different from those that are expected under the hypothesis ?" 

where the word significantly has a well defined technical meaning. . 

As such it is reasonable to form an absolute calibration of the 

significance scale. It is certainly true, however, that 

"significant" in its technical sense does not necessarily mean 

"important". This paper, it seems to me, is concerned with the 

more difficult problem of assessing when the data indicate that 

the departures from the specified model are important. But, what 

is an important departure depends critically on the type of model 

being considered and more specifically on the use to be made of 

the model. It would seem, therefore, that any calibration of the 

redundancy scale should depend on these factors and specifically 

on the size of the deviations from the proposed model which are 

deemed to be important. 

Rasch: Let me First put a technical question to the speaker: From 

the approximation on only the exponential family of distributions 

was considered. It certainly offers facilities that folloW from 

the additivity of the relevant statistics, but is that quite 

decisive ? Are similar results available for other types of 

distributions ? 

Next I wish to make it quite explicit, that the reason for 

using both significance and redundancy lies in the contention that 

every model is basically wrong, i.e. it is bound to fail, given 

enough data. 

When you are in the possession of a set of data you may then 

either be in the position that your significance test tells you 

that the model fails, or you may not have got enough observations 

for that purpose. In the latter case you cannot yet reject the 

model on statistical grounds - which of course should not be 

construed as meaning that you really accept it. In the former 

case you have to realize that the model fails - and I have no 

sympathy for relaxing the significance requirement for the reason 

that the data are substantial enough to show it - but that does  

not mean that the model is too bad to be applied in the actual case 

To take a parallel from elementary physics: A "mathematical 

pendulum" is defined as "a heavy point, swinging frictionless in a 

weightless string in vacuum". A contraption like that was never 

seen; thus as a model for the motion of a real pendulum it is 

"unrealistic". Notwithstanding, it works quite well for a short 

time interval, but it begins soon to show a systematic decrease of 

the oscillation angle. To the model - a second order differential 

equation - thus requiring an amendment, a Friction term is added, 

and now it works perfectly well for a long time, even during a few 

days, until another systematic deviation shows. If needed, a 

further correction, for air resistance, say, Should be attempted -

but as a matter of fact, this is not needed, because it has worked 

well enough for the purpose of the geo-physicist, which was to 

measure the gravity constant ("g") with 7 decimal places ! 

It it exactly at this point Martin-L6f's redundancy sets in: 

the model fails - that being demonstrated by some significance 

test - but does it matter for its purposes ? 

Taking his cue from Information Theory, Martin-Li:if uses the 

redundancy, as there defined, for measuring the deviation of the 

model from the data, in the sense of determining the relative 

decrease of the amount of information in the data which is caused 

by the departure from the null hypothesis. 

Taken literally, the redundancy as a tool may be a rather 

gross evaluation of the loss suffered by replacing the data by 

the model. Even if it seems small the parts lost may affect some 

of the use of the model quite appreciably. Therefore it may be 

necessary to undertake a careful analysis in order to localise 

the losses and consider what to do about them. 

In this connection I may touch upon Weldons dice throwing 
experiment with a redundancy of 0.000024. But what if we on 
several repetitions found the same result and it turned out, that 

the deviations of the observed distributions from the model 

distributions persisted in the same parts of them ? 

I do not know of any repetition of the experiment, neither of 

any detailed report on fractions of it as they were produced 

during some years, but I do happen to know (see Steffensen (1923)) 
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that in a similar case the deviations were taken sufficiently 

seriously by statisticians to attempt fitting them with a 

number of alternative distributions, any particular justification 

of which I do not recall having seen. 

Let me end up with the scale of redundancies presented by the 

speaker. It did leave me with the notion of new horrors of 

conventional limits ! In this connection we may, however, have a 

chance of doing it more rationally by analyzing just which sort of 

damage and how much of it is invoked by using the model for 

specified purposes. 

I do look forward to the contribution of the redundancy 

concept to articulating my vague thesis, that we should never 

succumb to the illusion that any of our models are correct, but 

we should certainly aim at making them adequate for our purposes -

the redundancy possibly being .a useful measuring instrument in 

that connection. 

Author's reply: Dempster asks how the Bayesian would have to let 

his prior distribution change as sample size increases in order 

to reproduce the results of redundancy testing. I do not know 

exactly how, but it is clear that the change would have to be 

quite drastic. It would probably be more reasonable to ask how 

he would have to change his 5 in order to reproduce the results in 

question. 

It is true that the definition of the redundancy involves no 

power function considerations, but I cannot agree with Cox that 

it involves no considerations at all outside the null hypothesis 

itself. The null hypothesis asserts that the data x can be 

described by the statistic u(x), and we are testing this hypothesis 

against the alternative determined by a statistic t(x) through 

which u(x) factors, so that we may write u(x) = u(t(x)). 

Cox also asks if it is a viable idea to let the ordinate of 

the distribution of t under the null hypothesis define the test 

statistic even if this distribution varies irregularly. As a 

typical example, we may consider the hypothesis of absence of a 

trend in a permutation x l ,...,xn  of the integers 1,...,n. The 

statistic 
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